Answer:
The beat frequency when each string is vibrating at its fundamental frequency is 12.6 Hz
Explanation:
Given;
velocity of wave on the string with lower tension, v₁ = 35.2 m/s
the fundamental frequency of the string, F₁ = 258 Hz
<u>velocity of wave on the string with greater tension;</u>

where;
v₁ is the velocity of wave on the string with lower tension
T₁ is tension on the string
μ is mass per unit length

Where;
T₁ lower tension
T₂ greater tension
v₁ velocity of wave in string with lower tension
v₂ velocity of wave in string with greater tension
From the given question;
T₂ = 1.1 T₁

<u>Fundamental frequency of wave on the string with greater tension;</u>
<u />
<u />
Beat frequency = F₂ - F₁
= 270.6 - 258
= 12.6 Hz
Therefore, the beat frequency when each string is vibrating at its fundamental frequency is 12.6 Hz
<span>The tire will rotate about 10 million times.
An automobile tire is slightly less than 2 and half feet in diameter. It's circumference is that times pi with is a bit over 3. So 2.5 * 3 = 7.5 ft as an estimate for how far the tire rolls per revolution.
A mile is a bit over 5000 feet, so call it 700 revolutions per mile.
For the 35000 miles, call it 7 times 5000 miles. Now 7 times 7 is a bit under 50, so call 7 * 700 = 5000. And 5000 times 5000 = 25000000. The nearest order of magnitude is 10 million.
So as an order of magnitude estimate, a automobile tire will rotate about 10 million times during it's life.</span>
Answer:
27.1m/s
Explanation:
Given parameters:
Height of the building = 30m
Initial velocity = 12m/s
Unknown:
Final velocity = ?
Solution:
We apply one of the kinematics equation to solve this problem:
v² = u² + 2gh
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
h is the height
v² = 12² + (2 x 9.8 x 30)
v = 27.1m/s