Answer:
True b and c
Explanation:
In an RLC circuit the impedance is
![Z = \sqrt{[R^{2} + ( (wL)^{2} + (\frac{1}{wC})^{2} ] }](https://tex.z-dn.net/?f=Z%20%3D%20%5Csqrt%7B%5BR%5E%7B2%7D%20%2B%20%28%20%28wL%29%5E%7B2%7D%20%2B%20%28%5Cfrac%7B1%7D%7BwC%7D%29%5E%7B2%7D%20%5D%20%20%20%20%20%7D)
examine the different phrases..
a) False. The maximum impedance is the value of the resistance
b) True. Resonance occurs when
(wL)² + (1 / wC)² = 0
w² = 1 / LC
c) True. In resonance the impedance is the resistive part and the power is maximum
d) False. In resonance the inductive and capacitive part cancel each other out
e) False. The impedance is always greater outside of resonance, but at the resonance point they are equal
Answer:
B. 6 cm
Explanation:
First, we calculate the spring constant of a single spring:

where,
k = spring constant of single spring = ?
F = Force Applied = 10 N
Δx = extension = 4 cm = 0.04 m
Therefore,

Now, the equivalent resistance of two springs connected in parallel, as shown in the diagram, will be:

For a load of 30 N, applying Hooke's Law:

Hence, the correct option is:
<u>B. 6 cm</u>
Supposing that the spring is un stretched when θ = 0, and has a toughness of k = 60 N/m.It seems that the spring has a roller support on the left end. This would make the spring force direction always to the left
Sum moments about the pivot to zero.
10.0(9.81)[(2sinθ)/2] + 50 - 60(2sinθ)[2cosθ] = 0 98.1sinθ + 50 - (120)2sinθcosθ = 0 98.1sinθ + 50 - (120)sin(2θ) = 0
by iterative answer we discover that
θ ≈ 0.465 radians
θ ≈ 26.6º