Answer:
90,000 J
Explanation:
Kinetic energy can be found using the following formula.

where <em>m </em>is the mass in kilograms and <em>v</em> is the velocity in m/s.
We know the object has a mass of 50 kilograms. We also know it is a traveling at a rate of 60 m/s. Velocity is the speed of something, so the velocity of the object is 60 m/s.
<em>m</em>=50
<em>v</em>=60
Substitute these values into the formula.

First, evaluate the exponent: 60^2. 60^2 is the same as multiplying 60, 2 times.
60^2=60*60=3,600

Multiply 50 and 3,600

Multiply 1/2 and 3,600, or divide 3,600 by 2.

Add appropriate units. Kinetic energy uses Joules, or J.

The kinetic energy of the object is 90,000 Joules
Thermal energy gives the particles of the substance kinetic energy because temperature is an average measure of kinetic enegy of the particle. If we give them thermal energy the particle will move faster, gaining enough energy to escape and become free. For example, from solid to liquid, the particles would espace their fixed position and be free to move as a liquid.
Answer:
The inverse of f equals the inverse of d Subscript o Baseline plus the inverse of d Subscript I Baseline.
Explanation:
The lens equation shows the relation among focal length of the lens, image distance and object distance. It can be expressed as:
=
+ 
where: f is the focal length of the lens,
is the object distance to the lens and
is the image distance to the lens.
The lens equation can be used to determine the unknown value among the variables f ,
and
.
Answer:
13.4 x 10 raise to power -19 C
Explanation:
. The distance moved by a charge in the direction of a uniform electric field is d= 1.8 cm =0.018 m
. The uniform electric field is E = 214 N/M
, The decrease in electrical potential energy is
d(P.E) = 51.63 x 10 raise to power -19 J
Let the magnitude of the charge of the moving particle be q
which is given by the equation
d(P.E) =qEd
51.63 x 10 power -19 = q(214)(0.018)
51.63 x 10 power -19 =3.852q
by making q the formular,
q = 13.4 x 10 power -19 C