Answer:
simple
Explanation:
<h3>CONCAVE MIRRORS AND LENSES</h3>
<h3>f= negative</h3>
<h3>CONVEX MIRRORS AND LENSES</h3><h3 /><h3>f= positive</h3>
<h3>PLEASE FOLLOW ME AND MARK IT BRAINLIEST</h3>
Answer:
Explanation:
A 6.0-cm-diameter parallel-plate capacitor has a 0.46 mm gap.
What is the displacement current in the capacitor if the potential difference across the capacitor is increasing at 500,000V/s?
Let given is,
The diameter of a parallel plate capacitor is 6 cm or 0.06 m
Separation between plates, d = 0.046 mm
The potential difference across the capacitor is increasing at 500,000 V/s
We need to find the displacement current in the capacitor. Capacitance for parallel plate capacitor is given by :
, r is radius
Let I is the displacement current. It is given by :
Here, is rate of increasing potential difference
So
So, the value of displacement current is .
Answer:
1) The energy released during nuclear fission or fusion, especially when used to generate electricity is called nuclear energy.
2) It is not renewable because it is an element that has no way whatsoever to regenerate or replicate itself, nor gets created by any natural terrestrial means, neither makes itself available by arriving from outer space (like sunlight). There is a limited amount of it available on the Earth, and every bit you use is a bit you’ll never have available again (as Uranium atoms get destroyed by the fission process).
Hope this helps You
Please mark as brainliest
Thank You
<h2>Answer: Light waves have a redshift due to the Doppler effect
</h2>
The astronomer Edwin Powell Hubble observed several celestial bodies, and when obtaining the spectra of distant galaxies he observed the spectral lines were displaced towards the red (red shift), whereas the nearby galaxies showed a spectrum displaced to the blue.
From there, Hubble deduced that the farther the galaxy is, the more redshifted it is in its spectrum. <u>The same happens with the stars and this phenomenom is known as the Doppler effect.
</u>
This phenomenon refers to the change in a wave perceived frequency (or wavelength=color) when the emitter of the waves, and the receiver (or observer in the case of light) move relative to each other. For example, as a star moves away from the Earth, its espectrum turns towards the red.