Answer:
For each scenario as following:
A. 3 Potential deaths by chlorine exposure
B. 1 Potential deaths by chlorine exposure
C. 3 Potential deaths by chlorine exposure
Explanation:
According to Freitag, 1941 Chlorine exposure can be lethal at the concentration of 34-51 ppm in a time of 1h-1.5h. The answers are based on his reference.
One way of knowing that oxygen was the gas removed from the volume of air and not another is to know what the volume of air is made of first. When the composition of the volume of air is already identified, then next would be the process of separating these elements from each other and as to which is to be separated first. This would usually lead to knowing their masses, their boiling and freezing points, the temperatures at which they condense, and so on. This is to identify their differences to each other and use those differences to successfully separate those elements to each other.
Answer:
The O is being oxidized, but at the same time, is being reducted.
Explanation:
H₂O₂(l) + ClO₂(aq) → ClO₂(aq) + O₂(g)
In this reaction, we have 4 compounds:
Hydrogen peroxide
Chlorine dioxide (twice)
Oxygen
In both dioxide, the Cl acts with +4 in oxidation state; the oxygen acts with -2.
Oxgen in ground state has 0, as oxidation number.
In peroxide, the H acts with +1 but the oxygen acts with -1.
Peroxide is making the oxidation number from the O in the ClO₂, to decrease (reduction) and to increase in the O, at the ground state.
Hydrogen peroxide is a good reducing and oxidizing agent at the same time.