Answer:
Increasing the mass and decreasing the distance between the two objects.
Explanation:
An increase in mass will cause them to have a stronger pull or gravity. A decrease of distance will make it easier for the objects to fall into each other because they would be further into the other objects area of influence.
that statement is true
a Third class lever applied when the effort place between the load and the fulcrum.
For example, in a forearm serve
Fulcrum : The elbow
Effort : The effort that putted by the biceps muscle
Load : The arm
The spring is initially stretched, and the mass released from rest (v=0). The next time the speed becomes zero again is when the spring is fully compressed, and the mass is on the opposite side of the spring with respect to its equilibrium position, after a time t=0.100 s. This corresponds to half oscillation of the system. Therefore, the period of a full oscillation of the system is
Which means that the frequency is
and the angular frequency is
In a spring-mass system, the maximum velocity of the object is given by
where A is the amplitude of the oscillation. In our problem, the amplitude of the motion corresponds to the initial displacement of the object (A=0.500 m), therefore the maximum velocity is
Pure water.
A salt solution contains impurities whereas pure water will not contain any impurities.
Impurities increase the boiling point (freezing point) of a substance.
Thus, I would expect the pure water solution to freeze faster than the salt solution.
For the answer to this question,
Thalia must consider the weight of the object and the mass of the sculpture. Weight and mass are different things. She should also consider the time on how long it will take to move it and where she'll move it.