1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PSYCHO15rus [73]
3 years ago
8

What includes a distance and a direction? A. Displacement B. Velocity C. Speed D. Acceleration

Physics
2 answers:
iren [92.7K]3 years ago
7 0

hi <3

the correct option would be A. displacement. displacement is distance in a direction

hope this helps :)

alina1380 [7]3 years ago
5 0

Answer:

The reason is simple. Speed is the time rate at which an object is moving along a path, while velocity is the rate and direction of an object's movement. Put another way, speed is a scalar value, while velocity is a vector.

Explanation:

You might be interested in
Lithium is more active than aluminium<br> A.True<br> B.false
WITCHER [35]
A:True because Lithium is the lighest solid and metal and the third lightest element.
5 0
3 years ago
Read 2 more answers
Care este densitatea materialului din care se confectioneaza un cub de 5cm daca masa lui este de 0,975kg/m3?
ValentinkaMS [17]

Answer:

i speak english not spanigh sorry :(

Explanation:

5 0
3 years ago
Read 2 more answers
The largest watermelon ever grown had a mass of 118 kg. Suppose this watermelon were exhibited on a platform 5.00 m above the gr
WINSTONCH [101]

Answer: height = 3.98m

Explanation: by placing the watermelon at a height above the ground, it has a potential energy of the formulae

p = mgh

p = potential energy = 4.61kJ = 4610J

m = mass of watermelon = 118 kg

g = acceleration due gravity = 9.8 m/s²

4610 = 118 * 9.8 * h

h = 4610/ 118 * 9.8

h = 4610/ 1156.4

h = 3.98m

6 0
3 years ago
Compute your average velocity in the following two cases: (a) You walk 50.2 m at a speed of 2.21 m/s and then run 50.2 m at a sp
Readme [11.4K]

Answer:

a) 2.87 m/s

b) 3.23 m/s

Explanation:

The avergare velocity can be found dividing the length traveled d by the total time t.

a)

For the first part we easily know the total traveled length which is:

d = 50.2 m + 50.2 m = 100.4 m

The time can be found dividing the distance by the velocity:

t1 = 50.2 m / 2.21 m/s = 22.7149 s

t2 = 50.2 m / 4.11 m/s = 12.2141 s

t = t1 +t2 = 34.9290 s

Therefore, the average velocity is:

v = d/t =2.87 m/s

b)

Here we can easily know the total time:

t = 1 min + 1.16 min = 129.6 s

Now the distance wil be found multiplying each velocity by the time it has travelled:

d1 = 2.21 m/s * 60 s = 132.6 m

d2 = 4.11 m/s *(1.16 * 60 s) = 286.056 m

d = 418.656 m

Therefore, the average velocity is:

v = d/t =3.23 m/s

5 0
3 years ago
An object has the acceleration graph shown in (Figure 1). Its velocity at t=0s is vx=2.0m/s. Draw the object's velocity graph fo
timama [110]

Answer:

Explanation:

We may notice that change in velocity can be obtained by calculating areas between acceleration lines and horizontal axis ("Time"). Mathematically, we know that:

v_{b}-v_{a} = \int\limits^{t_{b}}_{t_{a}} {a(t)} \, dt

v_{b} = v_{a}+ \int\limits^{t_{b}}_{t_{a}} {a(t)} \, dt

Where:

v_{a}, v_{b} - Initial and final velocities, measured in meters per second.

t_{a}, t_{b} - Initial and final times, measured in seconds.

a(t) - Acceleration, measured in meters per square second.

Acceleration is the slope of velocity, as we know that each line is an horizontal one, then, velocity curves are lines with slopes different of zero. There are three region where velocities should be found:

Region I (t = 0 s to t = 4 s)

v_{4} = 2\,\frac{m}{s}  +\int\limits^{4\,s}_{0\,s} {\left(-2\,\frac{m}{s^{2}} \right)} \, dt

v_{4} = 2\,\frac{m}{s}+\left(-2\,\frac{m}{s^{2}} \right) \cdot (4\,s-0\,s)

v_{4} = -6\,\frac{m}{s}

Region II (t = 4 s to t = 6 s)

v_{6} = -6\,\frac{m}{s}  +\int\limits^{6\,s}_{4\,s} {\left(1\,\frac{m}{s^{2}} \right)} \, dt

v_{6} = -6\,\frac{m}{s}+\left(1\,\frac{m}{s^{2}} \right) \cdot (6\,s-4\,s)

v_{6} = -4\,\frac{m}{s}

Region III (t = 6 s to t = 10 s)

v_{10} = -4\,\frac{m}{s}  +\int\limits^{10\,s}_{6\,s} {\left(2\,\frac{m}{s^{2}} \right)} \, dt

v_{10} = -4\,\frac{m}{s}+\left(2\,\frac{m}{s^{2}} \right) \cdot (10\,s-6\,s)

v_{10} = 4\,\frac{m}{s}

Finally, we draw the object's velocity graph as follows. Graphic is attached below.

3 0
3 years ago
Other questions:
  • Reaction rate depends on how many molecules come into contact with each other with enough energy to react. How would you increas
    6·1 answer
  • What is the acceleration of this object? The object's mass is 60 kg.
    13·2 answers
  • A particle that has mass m and charge q enters a uniform magnetic field that has magnitude B and is directed along the x axis. T
    10·1 answer
  • A 104 horse-power suv speeds up from 21 m/s to 29 m/s in 3 seconds, what is the mass of the suv?
    9·1 answer
  • Explain why a Merry-Go-Round and a Ferris Wheel have a constant acceleration when they are moving?
    15·1 answer
  • A skateboarder coasts a distance of 20 meters in 4 seconds. What is the person's speed?
    8·1 answer
  • If a force of 1250 N acts on an area of 25 metres squared, what will be the pressure acting on the surface? Show your working as
    15·2 answers
  • What will happen if there is no oxygen for 2mins???​
    8·1 answer
  • Which best describes the difference between internal and thermal energy?
    14·1 answer
  • A friend wants to know whether her wedding ring is made of pure
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!