Hey there!
H₃PO₄
Find molar mass.
H: 3 x 1.008 = 3.024
P: 1 x 30.97 = 30.97
O: 4 x 16 = 64
---------------------------------
97.994 grams
The mass of 1 mole of H₃PO₄ is 97.994 grams.
We have 4.5 moles.
97.994 x 4.5 = 440
The mass of 4.5 moles of H₃PO₄ is 440 grams.
Hope this helps!
(B), because 1.0 moles would be 6.02 x 10^23 molecules. So you have half a mole.<span>
</span>
Using the law of dilution :
Mi x Vi = Mf x Vf
2.00 x Vi = 0.15 x 100.0
2.00 x Vi = 15
Vi = 15 / 2.00
Vi = 7.5 mL
hope this helps!
Answer:
184.62 ml
Explanation:
Let
and
be the initial and
and
be the final pressure, volume, and temperature of the gas respectively.
Given that the pressure remains constant, so
...(i)
= 200 ml
K
K
From the ideal gas equation, pv=mRT
Where p is the pressure, v is the volume, T is the temperature in Kelvin, m is the mass of air in kg, R is the specific gas constant.
For the initial condition,

For the final condition,

Equating equation (i), and (ii)

[from equation (i)]

Putting all the given values, we have

Hence, the volume of the gas at 3 degrees Celsius is 184.62 ml.
Answer:
- <u>1. Equation: 2x + 3 = 9x - 11</u>
<u></u>
- <u>2. Each row has 2 chairs</u>
Explanation:
The variable x represents the number of chairs in each row.
<u />
<u>1. She can form 2 rows of a given length with 3 chairs left over.</u>
Thus, she has:
number of rows number of chairs in chairs number of chairs
each row left over she has
2 x 3 2x + 3
<u>2. She can form 9 rows of the same length if she gets 11 more chairs.</u>
That means that she is short in 11 chairs to have 9x chairs, or that she has 11 less chairs than 9x chairs. Then she has:
<u>3. Equation:</u>
Then, number of chairs she has is 2x + 3 and, also, 9x - 11, which allows to set the equation:
<u>4. Solve the equation:</u>
Therefore, each row has 2 chairs, and she has 2x + 3 = 4 + 3 = 7 chairs.