Answer:
B. Is the correct answer :) i hope this helps!!
Explanation:
brainliest please?
Explanation:
The O atom is sp3 in a water molecule, with two sigma bonds and two lone pairs of electrons like that in water. The steric integer is thus 4, and its structure is tetrahedral.
The C atom is sp hybridised into two identical bonds and two identical bonds in acetylene.
The steric integer is therefore 2 because only sigma bonds are engaged in deciding hybridization, and its structure is linear.
The C atom is sp2 hybridised in ethene with single pi bond and three sigma identical bonds.
Thus the steric integer is 3, and its structure is planar trigonal.
The C atom is sp2 hybridized in ethene, with one pi bond and three sigma identical bonds.
The steric integer would therefore be 3 and its structure is planar trigonal.
The O atom is sp3 in a water molecule with two bond pairs and two lone pairs of electrons like that. The steric integer is thus 4, and its structure is tetrahedral.
The C atom is sp3 in a methane ring, with 4 bond pairs and no solitary pairs of electrons like that. The steric integer is thus 4, and its structure is tetrahedral.
We assume that we have Ka= 4.2x10^-13 (missing in the question)
and when we have this equation:
H2PO4 (-) → H+ + HPO4-
and form the Ka equation we can get [H+]:
Ka= [H+] [HPO4-] / [H2PO4] and we have Ka= 4.2x10^-13 & [H2PO4-] = 0.55m
by substitution:
4.2x10^-13 = (z)(z)/ 0.55
z^2 = 2.31x 10^-13
z= 4.81x10^-7
∴[H+] = 4.81x10^-7
when PH equation is:
PH= -㏒[H+]
= -㏒(4.81x10^-7) = 6.32
Answer:
A. Wipe down the glassware to remove any cleaning solvent.
Explanation:
· Remove stoppers and stopcocks when they are not in use. Otherwise, they may "freeze" in place. You can de-grease ground glass joints by wiping them with a lint-free towel soaked with ether or acetone. Wear gloves and avoid breathing the fumes. The deionized water rinse should form a smooth sheet when poured through clean glassware.
Answer:
The correct option is False
Explanation:
Ionization energy is the <em>minimum amount of energy required to remove a valence electron from one mole of an atom in it's gaseous state</em>. Ionization energy requires the removal of an electron from a gaseous atom. The definition in the question is that of electronegativity.
Electronegativity is the <u>ability of an atom to attract electrons towards itself in a chemical bond.</u>