Solution :
Energy of photon, E = 6.7 eV
E =
joule
Kinetic energy, 


Kinetic energy at high speeds


r - 1 = 7130
r = 7130 + 1
r = 7131


![$v^2=C^2\left[1-\left(\frac{1}{7131}\right)^2\right]$](https://tex.z-dn.net/?f=%24v%5E2%3DC%5E2%5Cleft%5B1-%5Cleft%28%5Cfrac%7B1%7D%7B7131%7D%5Cright%29%5E2%5Cright%5D%24)

Δ = 1 - 0.99999999017
= 0.00000000933
Relative mass, 

kg
Answer:
a.Attractive

Explanation:
When it comes to charges, the charges which are alike repel each other and the charges which are different will attract each other.
Here, there is a proton and electron which are different particles hence, they will attract each other.
= Charge of electron and proton = 
r = Distance between them = 997 nm
k = Coulomb constant = 
Force is given by

The force of attraction between the particles will be 
The force needed to overcome sliding friction is more than the force needed to overcome rolling friction or static or even fluid
Answer:
3600 kg
Explanation:
From the question,
Density = Mass/Volume
D = M/V.............................. Equation 1
Where D = Density of the substance, M = mass of the substance, V = Volume of the subtance.
Make M the subject of the equation
M = D×V ............................ Equation 2
Given: D = 1200 kg/m³, V = 3 m³.
Substitute these values into equation 2
M = 1200×3
M = 3600 kg.
Hence the mass of the substance is 3600 kg
He will be a pilot and he will fly the plane over bridges fewwww