Nuclear decay formula is N(t)=N₀*2^-(t/T), where N(t) is the amount of nuclear material in some moment t, N₀ is the original amount of nuclear material, t is time and T is the half life of the material, in this case carbon 14. In our case N(t)=12.5% of N₀ or N(t)=0.125*N₀, T=5730 years and we need to solve for t:
0.125*N₀=N₀*2^-(t/T), N₀ cancels out and we get:
0.125=2^-(t/T), 
ln(0.125)=ln(2^-(t/T))
ln(0.125)=-(t/T)*ln(2), we divide by ln(2),
ln(0.125)/ln(2)=-t/T, multiply by T,
{ln(0.125)/ln(2)}*T=-t, divide by (-1) and plug in T=5730 years,
{ln(0.125)/[-ln(2)]}*5730=t
t=3*5730=17190 years.
The bone is t= 17190 years old. 
        
             
        
        
        
Answer:
Plastic heats up faster :)
Explanation:
 
        
             
        
        
        
The reason is because the force due to the acceleration from gravity is constant. It's the same as the typical "dropping a bowling ball and feather (with no air resistance) at the same time". Gravity acts on all object with the same acceleration regardless of physical properties.
 
        
                    
             
        
        
        
Can someone pls help us with this question I need the answer too
        
             
        
        
        
Answer:
λ = 28,14 m
Explanation:
To find the wavelength of the wave you use the following formula:
  (1)
v: speed of the wave = 1,97 m/s
λ: wavelength 
f: frequency of the wave = 0,07 Hz
You replace the values of v and f in the equation (1) and solve for λ:

hence, the wavelength of the wave is 28,14 m