(30, 5)
(10, 1)
change of y / change of x
= (30 - 10) / (5 - 1)
= 20 /4
= 5
Answer:
When the liquid moves through the hydrosphere, the water collects into a cloud. When it falls to the earth, turning into snow and sleet collecting in rivers and lakes.
Explanation:
Hope that helps
Answer:
2697.75N/m
Explanation:
Step one
This problem bothers on energy stored in a spring.
Step two
Given data
Compression x= 2cm
To meter = 2/100= 0.02m
Mass m= 0.01kg
Height h= 5.5m
K=?
Let us assume g= 9.81m/s²
Step three
According to the principle of conservation of energy
We know that the the energy stored in a spring is
E= 1/2kx²
1/2kx²= mgh
Making k subject of formula we have
kx²= 2mgh
k= 2mgh/x²
k= (2*0.01*9.81*5.5)/0.02²
k= 1.0791/0.0004
k= 2697.75N/m
Hence the spring constant k is 2697.75N/m
The devices don't "draw" 120v. The 120v comes to your house from the power company. They decide it should be 120v and that's what they send you. It's hypothetically technically possible for you to change that, but if you try it, you'll definitely burn the house down.
The total resistance of those two devices in parallel is 6 and 2/3 ohms. That doesn't depend on what they're plugged into. It would still be 6 and 2/3 ohms if they were connected in parallel, wrapped in tissue, sealed in a jar of chicken soup and stored in a box on a high shelf.
But since they ARE plugged into 120v, they draw 18 Amperes from the socket, and they turn all of that electrical energy into 2160 watts of heat. That's about the same as a good size toaster oven, and you have to figure out a way to get rid of all that heat before you burn the house down.