<span> Let’s determine the initial momentum of each car.
#1 = 998 * 20 = 19,960
#2 = 1200 * 17 = 20,400
This is this is total momentum in the x direction before the collision. B is the correct answer. Since momentum is conserved in both directions, this will be total momentum is the x direction after the collision. To prove that this is true, let’s determine the magnitude and direction of the total momentum after the collision.
Since the y axis and the x axis are perpendicular to each other, use the following equation to determine the magnitude of their final momentum.
Final = √(x^2 + y^2) = √(20,400^2 + 19,960^2) = √814,561,600
This is approximately 28,541. To determine the x component, we need to determine the angle of the final momentum. Use the following equation.
Tan θ = y/x = 19,960/20,400 = 499/510
θ = tan^-1 (499/510)
The angle is approximately 43.85˚ counter clockwise from the negative x axis. To determine the x component, multiply the final momentum by the cosine of the angle.
x = √814,561,600 * cos (tan^-1 (499/510) = 20,400</span>
Answer:
the average force exerted on the ball by the bat is 11,613.27 N
Explanation:
Given;
mass of the baseball, m = 151 g = 0.151 kg
initial velocity of the baseball, u = 39.5 m/s
final velocity of the baseball, v = 45.1 m/s
time of action, t = 1.10 ms = 1.10 x 10⁻³ s
The average force exerted on the ball by the bat is calculate as;
Therefore, the average force exerted on the ball by the bat is 11,613.27 N
Answer:
Explanation:
This is a problem based on time dilation , a theory given by Albert Einstein .
The formula of time dilation is as follows .
t₁ = 
t is time measured on the earth and t₁ is time measured by man on ship .
A ) Given t = 20 years , t₁ = ? v = .4c

=1.09 x 20
t₁= 21.82 years
B ) Given t = 5 years , t₁ = ? v = .2c

=1.02 x 5
t₁= 5.1 years
C ) Given t = 10 years , t₁ = ? v = .8c

=1.67 x 10
t₁= 16.7 years
D ) Given t = 10 years , t₁ = ? v = .4c

=1.09 x 10
t₁= 10.9 years
E ) Given t = 20 years , t₁ = ? v = .8c

=1.67 x 20
t₁= 33.4 years
Answer:
Drums, harps, recorders, and bagpipes.
Explanation:
Answer:
a. A baseball after it has been hit - not in free fall
b. A rock that is thrown in the air - not in free fall
c. The moon - free-fall
d. A paper airplane - not in free fall
e. A bird flying - not in free fall
Explanation:
- The free-fall is defined as the falling of an object due to the action of gravity. The object is not experiencing any other force neglecting the air resistance.
- If an object is in free-fall, the direction of its motion is directed towards the center of the earth. It does not have a horizontal component of velocity.
- If the body is under free-fall, but a centripetal force acts on it where it is equal to the gravitational force at that point. The object will have two components of velocity along the tangential line, perpendicular to the radius of the orbit.
a. A baseball after it has been hit - not in free fall according to point 1 & 2.
b. A rock that is thrown in the air - not in free fall according to point 1.
c. The moon - free-fall according to point 3.
d. A paper airplane - not in free fall according to point 1 & 2.
e. A bird flying - not in free fall according to point 1 & 2.