Answer:
Centripetal force is perpendicular to velocity and causes uniform circular motion. ... force exerted on a 900.0-kg car that negotiates a 500.0-m radius curve at 25.00 m/s. ... A car moving at 96.8 km/h travels around a circular curve of radius 182.9 m ... Because the car does not leave the surface of the road, the net vertical force ...
Explanation:
HE monda
I hope it is clearly visible.. Velocity of the center of mass of 2-ball system is - 11.54m/s. Minus indicates, velocity direction is in downward direction.
Answer:
We are given x= bt +ct²
So
A. bxt= m
Because m/s*s= m
So b= m/s and c= m/s²
B.
x= bt-ct²
So at x=0 t=0
x=0 t= 2
We have
bt = ct² so t = b/c at x= 0
So b-2ct= 0
B. To find velocity we use
dx / dt = b - 2 Ct
C. At rest wen V= 0
We have t= b/2c
D. To find acceleration we use
dv / dt = - 2C
Answer:
12.6332454263 m/s
Explanation:
m = Mass of car
v = Velocity of the car
= Coefficient of static friction = 0.638
g = Acceleration due to gravity = 9.81 m/s²
r = Radius of turn = 25.5 m
When the car is on the verge of sliding we have the force equation

The speed of the car that will put it on the verge of sliding is 12.6332454263 m/s