Answer:
As the capacitor is discharging, the current is increasing
Explanation:
Lets take
C= Capacitance
L=Inductance
V=Voltage
I= Current
The total energy E given as

We know that total energy E is conserved so when electric energy 1/2 CV² decreases then magnetic energy 1/2 IL² will increases.
It means that when charge on the capacitor decreases then the current will increase.
As the capacitor is discharging, the current is increasing
Class 1 lever
Explanation:
In a class 1 lever, the fulcrum is placed between the effort and the load. This lever systems is the most common.
- The effort is the force input and the load is the force output
- The fulcrum is a hinge between the load and effort.
- Movement of the effort and load are in opposite directions.
- There are other classes of lever like the class 2 and 3.
- They all have different load, fulcrum and effort configurations
learn more:
Load related problems brainly.com/question/9202964
Torque brainly.com/question/5352966
#learnwithBrainly
Answer:
Water gets up to the Earth's atmosphere by evaporating from a body of water, which is then they become water vapor. It returns back to the surface by returning back to its water state and falling back down (as rain). The water vapor turns into clouds (clouds are really just water droplets), and when it cannot hold anymore waters, it disperses all the water (by raining).
Electron as a free particle
Explanation:
Free electrons,the electrons which are not attached to the nucleus of a atom and free to move
To solve this problem it is necessary to apply the kinematic equations of movement description, specifically those that allow us to find speed and acceleration as a function of distance and not time.
Mathematically we have to

Where,
Final velocity and Initial velocity
a = Acceleration
x = Displacement
From the description given there is no final speed (since it reaches the maximum point) but there is a required initial speed that is contingent on traveling a certain distance under the effects of gravity


Therefore the speed which must a rock thrown straight up is 14*10^2m/s to reach the edge of our atmosphere.
The displacement and gravity traveled are the same, therefore the final speed will be the same but in the opposite vector direction (towards the earth), that is 