Use the right equation. To calculate the normal force of an object at an angle, you need to use the formula: N = m * g * cos (x) For this equation, N refers to the normal force, m refers to the object's mass, g refers to the acceleration of gravity, and x refers to the angle of incline.
The equation to be used is the derived formulas for rectilinear motion at a constant acceleration. The formula for acceleration is
a = (v - v₀)/t
where
v and v₀ are the initial and final velocities, respectively
t is the time
a is the acceleration
Since it started from rest, v₀ = 0. Using the formula:
0.15 m/s² = (v - 0)/[2 minutes*(60 s/1 min)]
Solving for v,
v = 18 m/s
To solve this problem we will derive the expression of the precession period from the moment of inertia of the given object. We will convert the units that are not in SI, and finally we will find the precession period with the variables found. Let's start defining the moment of inertia.

Here,
M = Mass
R = Radius of the hoop
The precession frequency is given as

Here,
M = Mass
g= Acceleration due to gravity
d = Distance of center of mass from pivot
I = Moment of inertia
= Angular velocity
Replacing the value for moment of inertia


The value for our angular velocity is not in SI, then


Replacing our values we have that


The precession frequency is




Therefore the precession period is 5.4s