There are several many equations that are available to relate the distance,
speed, and time of a body moving vertically in gravity. Happily, the only one
I can always remember without looking it up happens to be the right one to
use for this question !
Distance = (1/2) x (gravity) x (time)²
3.8 m = (1/2) x (9.8 m/s²) x (time)²
Divide each side
by 4.9 m/s² :
(3.8 m) / (4.9 m/sec²) = (time)²
0.7755 sec² = time²
Square root
of each side:
0.88 second = time
To calculate we use the formula for a magnetic force in a current-carrying wire expressed as the product of the current, magnetic field and the length of the wire.
F = I x L x B
where F is the force on the wire, I is the current flowing on the wire, L is the length of the wire and B is the magnetic field.
F = 10.0 A x 1.2 m x 0.050 T
F = 0.60 N
Explanation:
The gravitational force equation is the following:

Where:
G = Gravitational constant = 
m1 & m2 = the mass of two related objects
r = distance between the two related objects
The problem gives you everything you need to plug into the formula, except for the gravitational constant. Let me know if you need further clarification.