Answer:
The concentration of cyclopropane after 22.0 hour is 0.0457 M.
Explanation:
Conversion of cyclopropane into propene follows first order kinetics.
The integrated rate of first order kinetic is given by :
![[A]=[A_o]\times e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA_o%5D%5Ctimes%20e%5E%7B-kt%7D)
= Initial concentration of reactant
= final concentration of reactant after time t
k = rate constant of the reaction
We have :
Rate constant of the reaction = k = 
![[A_o]=0.150 M](https://tex.z-dn.net/?f=%5BA_o%5D%3D0.150%20M)
t = 22.0 hour
[A] =?
![[A]=0.150 M\times e^{-5.4\times 10^{-2} hour^{-1}\times 22.hour}](https://tex.z-dn.net/?f=%5BA%5D%3D0.150%20M%5Ctimes%20e%5E%7B-5.4%5Ctimes%2010%5E%7B-2%7D%20hour%5E%7B-1%7D%5Ctimes%2022.hour%7D)
![[A]=0.0457 M](https://tex.z-dn.net/?f=%5BA%5D%3D0.0457%20M)
The concentration of cyclopropane after 22.0 hour is 0.0457 M.
1 kpa = 0.0098692327 atm so just multiply that by 45.6
Answer is a
bacteria doesn't have any cellular function in the cell.
Answer: from the Zn anode to the Cu cathode
Justification:
1) The reaction given is: Zn(s) + Cu₂⁺ (aq) -> Zn²⁺ (aq) +Cu(s)
2) From that, you can see the Zn(s) is losing electrons, since it is being oxidized (from 0 to 2⁺), while Cu²⁺, is gaining electrons, since it is being reduced (from 2⁺ to 0).
3) Then, you can already tell that electrons go from Zn to Cu.
4) The plate where oxidation occurs is called anode, and the plate where reduction occus is called cathode.
So you get that the electrons flow from the anode (Zn) to the cathode (Cu).
Always oxidation occurs at the anode, and reduction occurs at the cathode.
Answer:
The amount of space an object occupies.
Explanation: