Answer:
Assuming air resistance is negligible, all of the potential energy that the object has at the top of the ramp is converted into kinetic energy by the time it gets to the bottom of the ramp. This is because no matter what path the object takes to move the 5m vertically (ie. falling straight down v. sliding on the ramp), gravity does the same amount of work on it.
Thus, calculate the total amount of potential energy at the top of the ramp:
Ep=mgh
Ep=4(9.81)5
Ep=196.2 Joules
Because all of this potential energy is converted into kinetic energy in the object by the bottom of the ramp, the object hits the spring with 196.2J of energy.
By using the formula for elastic potential energy, you can calculate exactly how far the spring compresses.
196.2=(1/2)k(x^2)
392.4=(350)(x^2)
1.1211=x^2
sqrt(1.1211)=x
x=1.059m
As for the last part of the question, after the object compresses the spring fully and stops momentarily, the spring converts it's elastic potential energy back into kinetic energy in the object and pushes it away again.
Explanation:
Answer:
91.64 km
91.64 km high material would go on earth if it were ejected with the same speed as on Io.
Explanation:
According to Newton Law of gravitation:

Where:
G is gravitational constant=
For Moon lo g is:

According to law of conservation of energy
Initial Energy=Final Energy


For Jupiter's moon Io:
Velocity is given by:

For Earth Velocity is given by:

Now:





91.64 km high material would go on earth if it were ejected with the same speed as on Io.
Answer:
Natural gas is non renewable energy.
Explanation:
Because they were formed from the buried reamains of plants and animals that live a million years ago. It is formed from fossil fuels.
Answer:
-24 m/s
Explanation:
mass of the bowling ball = 3 kg
time (t) = 0.3 seconds
Force = 24 N
initial velocity u = ???
We know that;
Force = mass × acceleration (a)
So;
24 = 3 × a
a = 24/3
a = 8 m/s²
Also;
From equation of motion; acceleration is given by the relation;

if v = 0
then ;

24 = 0- u
u = -24 m/s
Thus; the initial velocity of the bowling ball when it first touched the mattress = -24 m/s
<h3>It takes 60 seconds to do the work</h3>
<em><u>Solution:</u></em>
Given that,
Force = 100 newtons
Distance = 15 meters
Power = 25 watts
To find: time it takes to do the work
<em><u>Find the work done:</u></em>

<em><u>Find the time taken</u></em>

Thus it takes 60 seconds to do the work