1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maksim [4K]
3 years ago
6

Complete the equation for respiration: Oxygen + ________ ---> carbon dioxide + energy + water *

Chemistry
1 answer:
Tom [10]3 years ago
5 0

Answer:Sunlight

Explanation:

You might be interested in
Which atom is most likely to accept electrons to form an ionic bond?
Alinara [238K]
Halogens (atoms with 7 valence electrons) and Hydrogen

or generally, atoms with their shells almost full
5 0
3 years ago
Dumbledore decides to gives a surprise demonstration. He starts with a hydrate of Na2CO3 which has a mass of 4.31 g before heati
vovikov84 [41]

Answer:

Na₂CO₃.2H₂O

Explanation:

For the hydrated compound, let us denote is by Na₂CO₃.xH₂O

The unknown is the value of x which is the amount of water of crystallisation.

Given values:

Starting mass of hydrate i.e Na₂CO₃.xH₂O = 4.31g

Mass after heating (Na₂CO₃) = 3.22g

Mass of the water of crystallisation = (4.31-3.22)g = 1.09g

To determine the integer x, we find the number of moles of the anhydrous Na₂CO₃ and that of the water of crystallisation:

        Number of moles  = \frac{mass }{molar mass }

Molar mass of Na₂CO₃ =[(23x2) + 12 + (16x3)]  = 106gmol⁻¹

Molar mass of H₂O = [(1x2) + (16)] = 18gmol⁻¹

Number of moles of Na₂CO₃ = \frac{3.22}{106} = 0.03mole

Number of moles of H₂O =  \frac{1.09}{18} = 0.06mole

From the obtained number of moles:

                          Na₂CO₃                               H₂O

                           0.03                                    0.06

Simplest

Ratio                  0.03/0.03                         0.03/0.06

                                 1                                      2

Therefore, x = 2    

7 0
3 years ago
List the properties of copper, sulfur and copper sulfide?
Y_Kistochka [10]
The answer would be metal
7 0
3 years ago
Use the table to answer the question
My name is Ann [436]

Answer:

B

Explanation:

hope the picture helps you to understand:)

4 0
3 years ago
Read 2 more answers
Any help would be appreciated. Confused.
masya89 [10]

Answer:

q(problem 1) = 25,050 joules;  q(problem 2) = 4.52 x 10⁶ joules

Explanation:

To understand these type problems one needs to go through a simple set of calculations relating to the 'HEATING CURVE OF WATER'. That is, consider the following problem ...

=> Calculate the total amount of heat needed to convert 10g ice at -10°C to steam at 110°C. Given are the following constants:

Heat of fusion (ΔHₓ) = 80 cal/gram

Heat of vaporization (ΔHv) = 540 cal/gram

specific heat of ice [c(i)] = 0.50 cal/gram·°C

specific heat of water [c(w)] = 1.00 cal/gram·°C

specific heat of steam [c(s)] = 0.48 cal/gram·°C

Now, the problem calculates the heat flow in each of five (5) phase transition regions based on the heating curve of water (see attached graph below this post) ...   Note two types of regions (1) regions of increasing slopes use q = mcΔT and (2) regions of zero slopes use q = m·ΔH.

q(warming ice) =  m·c(i)·ΔT = (10g)(0.50 cal/g°C)(10°C) = 50 cal

q(melting) = m·ΔHₓ = (10g)(80cal/g) 800 cal

q(warming water) = m·c(w)·ΔT = (10g)(1.00 cal/g°C)(100°C) = 1000 cal

q(evaporation of water) =  m·ΔHv = (10g)(540cal/g) = 5400 cal

q(heating steam) = m·c(s)·ΔT = (10g)(0.48 cal/g°C)(10°C) = 48 cal

Q(total) = ∑q = (50 + 800 + 1000 + 5400 + 48) = 7298 cals. => to convert to joules, multiply by 4.184 j/cal => q = 7298 cals x 4.184 j/cal = 30,534 joules = 30.5 Kj.

Now, for the problems in your post ... they represent fragments of the above problem. All you need to do is decide if the problem contains a temperature change (use q = m·c·ΔT) or does NOT contain a temperature change (use q = m·ΔH).    

Problem 1: Given Heat of Fusion of Water = 334 j/g, determine heat needed to melt 75g ice.

Since this is a phase transition (melting), NO temperature change occurs; use q = m·ΔHₓ = (75g)(334 j/g) = 25,050 joules.

Problem 2: Given Heat of Vaporization = 2260 j/g; determine the amount of heat needed to boil to vapor 2 Liters water ( = 2000 grams water ).

Since this is a phase transition (boiling = evaporation), NO temperature change occurs; use q = m·ΔHf = (2000g)(2260 j/g) = 4,520,000 joules = 4.52 x 10⁶ joules.

Problems containing a temperature change:

NOTE: A specific temperature change will be evident in the context of problems containing temperature change => use q = m·c·ΔT. Such is associated with the increasing slope regions of the heating curve.  Good luck on your efforts. Doc :-)

5 0
3 years ago
Other questions:
  • Why are atoms considered the smallest particles of an element?
    15·2 answers
  • Write a sentence to explain mitosis using a skin cell as an example
    14·1 answer
  • In this graph, what are the independent and dependent variables?
    13·2 answers
  • 10.An alpha particle (a) same as *
    6·1 answer
  • Calculate the amount of energy when water at 72 degrees c freezes completely at 0 degrees c
    13·1 answer
  • Which of the following statements is true?
    6·1 answer
  • Please help on question 7 and 8<br>​
    12·1 answer
  • Result in the formation of one or more new substances with new chemical and physical properties
    11·1 answer
  • Can someone answer these for me I’ll mark you brainliset or whatever it’s called lol I rlly need to get these right
    15·1 answer
  • How many formula units of silver fluoride, AgF, are equal to 42.15 g of this substance?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!