Answer:
Complete answer: We boil the leaf in alcohol when we are checking it for starch to eradicate chlorophyll, which is the green pigment present in leaves. ... Hence to dissolve the chlorophyll or the green pigment present in the leaf we boil the leaf in alcohol when we are testing it for starch.
Hope this helps! Have a great day!
Answer:
Explanation:
The net force on the potatoes is given by:
F= 52 - mgSintheta
F= 52- (2×9.8× Sin70°)
F = 52 -18.4
F= 33.58N
Using Newton's 2nd law
F = ma
a=F/m = 33.58/ 2 = 16.79m/s^2
Using the equation of motion:
V^2= u^2 + 2as
V^2 = 0 + 2× 16.79 x2
V^2 = 67.16
V=sqrt(68.16)
V= 8.195m/s This is the exit velocity of the potatoes
Kinetic energy, K.E = 1/2mv^2
KE= 1/2 × 2 × 8.195^2
KE = 67.16J
Answer:
The difference is 7.6 grams.
Explanation:
In mathematics the difference of two numbers is express as the subtraction between them:

So to find out the difference between the two measured masses, a will be represented by 123.6 grams since is the bigger number, and b by 115.972 grams.
Therefore, it is get:

<u>Hence, the difference is 7.6 grams. </u>
The result of 7.628 will be expressed as 7.6 to have the correct number of significant figures.
Notice how that can be express in units of kilograms too since there is 1000 gram in 1 kilogram:
⇒ 
Moment of inertia of single particle rotating in circle is I1 = 1/2 (m*r^2)
The value of the moment of inertia when the person is on the edge of the merry-go-round is I2=1/3 (m*L^2)
Moment of Inertia refers to:
- the quantity expressed by the body resisting angular acceleration.
- It the sum of the product of the mass of every particle with its square of a distance from the axis of rotation.
The moment of inertia of single particle rotating in a circle I1 = 1/2 (m*r^2)
here We note that the,
In the formula, r being the distance from the point particle to the axis of rotation and m being the mass of disk.
The value of the moment of inertia when the person is on the edge of the merry-go-round is determined with parallel-axis theorem:
I(edge) = I (center of mass) + md^2
d be the distance from an axis through the object’s center of mass to a new axis.
I2(edge) = 1/3 (m*L^2)
learn more about moment of Inertia here:
<u>brainly.com/question/14226368</u>
#SPJ4