Answer:
she can use crystalization method.
Explanation:
She should boil that liquid on flame and then cool it down on mederate temprature and check it out rather the crystals formed or not . if crystals are formed then there will be salts.
And if she want topredict the certain salt then she has to perform certain reactions.
<span>Answer:
Graham's law of gaseous effusion states that the rate of effusion goes by the inverse root of the gas' molar mass.
râšM = constant
Therefore for two gases the ratio rates is given by:
r1 / r2 = âš(M2 / M1)
For Cl2 and F2:
r(Cl2) / r(F2) = âš{(37.9968)/(70.906)}
= 0.732 (to 3.s.f.)</span>
Answer:
A jump occurs when a core electron is removed.
Explanation:
A jump in ionization energy occurs when a core electron is removed. A large jump in the ionization energy easily be seen from the electronic configuration of an element.
For Beryllium, the electronic configuration of is 1s2 2s2.
There are two valence electrons in the outermost shell hence the ionization energy data for beryllium will show a sudden jump or increase in going from the second to the third ionization energy owing to the removal of a core electron
The electronic configuration for Nitrogen is 1s2 2s2 2p3. Five valence electrons are found in the outermost shell so the ionization energy data for nitrogen will show a sudden jump or increase in going from the fifth to sixth ionization energy because of the removal of a core electron
The electronic configuration of oxygen is 1s2 2s2 2p4. There are six valence electrons hence ionization energy for oxygen atom will show a sudden jump or increase in going from the sixth to the seventh ionization energy because of the removal of a core electron
The electronic configuration of Lithium is 1s2 2s1
There is one valence electron in its outermost shell so its ionization energy data will show a sudden jump or increase in going from the first to the second ionization energy because of the removal of a core electron.
Answer:
<h3>The answer is 3.85 s</h3>
Explanation:
The time taken can be found by using the formula

d is the distance covered
v is the velocity
From the question we have

We have the final answer as
<h3>3.85 s</h3>
Hope this helps you
Answer:
0.35714 Metric ton
Explanation:
350 / 0.98 = 357.1 ----------A
to get the answer on metric ton divide (a) by 1000
357.14/1000= 0.357