

ok, now press calculator. i dont have it now.
Answer:
the value of equilibrium constant for the reaction is 8.5 * 10⁷
Explanation:
Ti(s) + 2 Cl₂(g) ⇄ TiCl₄(l)
equilibrium constant Kc = ![\frac{1}{[Cl_2]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BCl_2%5D%5E2%7D)
Given that,
We are given:
Equilibrium amount of titanium = 2.93 g
Equilibrium amount of titanium tetrachloride = 2.02 g
Equilibrium amount of chlorine gas = 1.67 g
We calculate the No of mole = mass / molar mass
mass of chlorine gas = 1.67 g
Molar mass of chlorine gas = 71 g/mol
mole of chlorine = 1.67 / 71
= 7.0L
Concentration of chlorine is = no of mole / volume
= 0.024 / 7
= 3.43 * 10⁻³M
equilibrium constant Kc = ![\frac{1}{[Cl_2]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BCl_2%5D%5E2%7D)
= ![\frac{1}{[3.43 * 10^-^3]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5B3.43%20%2A%2010%5E-%5E3%5D%5E2%7D)
= 8.5 * 10⁷
<u>Answer:</u> C) be hypertonic to Tank B.
<u>Explanation: </u>
<u>
The ability of an extracellular solution to move water in or out of a cell by osmosis</u> is known as its tonicity. Additionally, the tonicity of a solution is related to its osmolarity, which is the <u>total concentration of all the solutes in the solution.
</u>
Three terms (hypothonic, isotonic and hypertonic) are used <u>to compare the osmolarity of a solution with respect to the osmolarity of the liquid that is found after the membrane</u>. When we use these terms, we only take into account solutes that can not cross the membrane, which in this case are minerals.
- If the liquid in tank A has a lower osmolarity (<u>lower concentration of solute</u>) than the liquid in tank B, the liquid in tank A would be hypotonic with respect to the latter.
- If the liquid in tank A has a greater osmolarity (<u>higher concentration of solute</u>) than the liquid in tank B, the liquid in tank A would be hypertonic with respect to the latter.
- If the liquid in tank A has the same osmolarity (<u>equal concentration of solute</u>) as the liquid in tank B, the liquid in tank A would be isotonic with respect to the latter.
In the case of the problem, option A is impossible because the minerals can not cross the membrane, since it is permeable to water only. There is no way that the concentration of minerals decreases in tank A, so <u>the solution in this tank can not be hypotonic with respect to the one in Tank B. </u>
Equally, both solutions can not be isotonic and neither we can say that the solution in tank A has more minerals that the one in tank B because the liquid present in tank B is purified water that should not have minerals. Therefore, <u>options B and D are also not correct.</u>
Finally, the correct option is C, since in the purification procedure the water is extracted from the solution in tank A to obtain a greater quantity of purified water in tank B. In this way, the solution in Tank A would be hypertonic to Tank B.
Answer:
Explanation:
If you insist on filling in the first blank you can put a one.
Answer:
Reaction A and B are unfavorable.
Explanation:
Gibbs free energy is an energy which that can be use to convert into useful work.
ΔG°=ΔH°-TΔS°
ΔG°= Gibbs free energy
ΔH° = enthalpy of reaction
T = temperature of eh reaction
ΔS° = Entropy change
- If the Gibbs free energy of the reaction is positive than the reaction will be non spontaneous and the chemical reaction will be not feasible.
- If the Gibbs free energy of the reaction is negative than the reaction will be spontaneous and the chemical reaction will be feasible .
According to given information in the question:
Reaction A and B are non spontaneous as their Gibbs free energy value is positive.hence both are unfavorable.