1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kompoz [17]
3 years ago
13

Which of these forces help protons and neutrons to stay at the center of the Atom

Physics
1 answer:
Tcecarenko [31]3 years ago
8 0
Strong nuclear force
You might be interested in
A golfer tees off and hits a golf ball at a speed of 31 m/s and at an angle of 35 degrees. What is the horizontal velocity compo
marishachu [46]
To calculate the horizontal velocity component, use the cosine identity. where cos A = a / h
where A is the angle the golfer hits the ball
a is the horizontal component velocity
h is the speed the golfer hits the ball

so a = h cos A
a = 31 cos 35
a = 25.4 m/s
6 0
3 years ago
You are driving at 25 m/s with your cruise control on when you see a fallen tree in the road. It takes you 0.30 s to put on the
xxTIMURxx [149]

Explanation:

Given data

velocity v= 25m/s

The time it takes to put on brake t= 0.3s

the distance covered when the  brake was put on is

v=s/t

s= v*t

s= 25*0.3s

s= 7.5m

hence the distance covered is 7.5m

Also the rate of decrease in aceleration is 5m/s^2

we can also calculate the distance covered at this rate

v^2=u^2+2as

25^2= 0+2*5*s

625=10s

divide both sides by 10

s=625/10

s= 62.5m

The total  distance covered between putting on the brakes and decelareation is  7.5+62.5= 70m

Given that the tree is 75m ahead, the car would not hit the tree

3 0
3 years ago
1. A block with a mass of 5.0 kg is pushed on a frictionless surface by applying a horizontal force of 80.0 N. The block starts
Snezhnost [94]

Answer:

397 j

Explanation:

Because 5.0kg yuh

3 0
2 years ago
two students are on a balcony 19.6 m above the street. one student throws a ball vertically downward at 14.7 m:ds. at the same i
NARA [144]

A. The difference in the two ball's time in the air is 3 seconds

B. The velocity of each ball as it strikes the ground is 24.5 m/s

C. The balls 0.500 s after they are thrown are 14.7 m apart

<h3>Further explanation</h3>

Acceleration is rate of change of velocity.

\large {\boxed {a = \frac{v - u}{t} } }

\large {\boxed {d = \frac{v + u}{2}~t } }

<em>a = acceleration ( m/s² )</em>

<em>v = final velocity ( m/s )</em>

<em>u = initial velocity ( m/s )</em>

<em>t = time taken ( s )</em>

<em>d = distance ( m )</em>

Let us now tackle the problem!

<u>Given:</u>

Initial Height = H = 19.6 m

Initial Velocity = u = 14.7 m/s

<u>Unknown:</u>

A. Δt = ?

B. v = ?

C. Δh = ?

<u>Solution:</u>

<h2>Question A:</h2><h3>First Ball</h3>

h = H - ut - \frac{1}{2}gt^2

0 = 19.6 - 14.7t - \frac{1}{2}(9.8)t^2

0 = 19.6 - 14.7t - 4.9t^2

4.9t^2 + 14.7t - 19.6 = 0

t^2 + 3t - 4 = 0

(t + 4)(t - 1) = 0

(t - 1) = 0

\boxed {t = 1 ~ second}

<h3>Second Ball</h3>

h = H + ut - \frac{1}{2}gt^2

0 = 19.6 + 14.7t - \frac{1}{2}(9.8)t^2

0 = 19.6 + 14.7t - 4.9t^2

4.9t^2 - 14.7t - 19.6 = 0

t^2 - 3t - 4 = 0

(t - 4)(t + 1) = 0

(t - 4) = 0

\boxed {t = 4 ~ seconds}

The difference in the two ball's time in the air is:

\Delta t = 4 ~ seconds - 1 ~ second

\large {\boxed {\Delta t = 3 ~ seconds} }

<h2>Question B:</h2><h3>First Ball</h3>

v^2 = u^2 - 2gH

v^2 = (-14.7)^2 + 2(-9.8)(-19.6)

v^2 = 600.25

v = \sqrt {600.25}

\boxed {v = 24.5 ~ m/s}

<h3>Second Ball</h3>

v^2 = u^2 - 2gH

v^2 = (14.7)^2 + 2(-9.8)(-19.6)

v^2 = 600.25

v = \sqrt {600.25}

\boxed {v = 24.5 ~ m/s}

The velocity of each ball as it strikes the ground is 24.5 m/s

<h2>Question C:</h2><h3>First Ball</h3>

h = H - ut - \frac{1}{2}gt^2

h = 19.6 - 14.7(0.5) - \frac{1}{2}(9.8)(0.5)^2

\boxed {h = 11.025 ~ m}

<h3>Second Ball</h3>

h = H + ut - \frac{1}{2}gt^2

h = 19.6 + 14.7(0.5) - \frac{1}{2}(9.8)(0.5)^2

\boxed {h = 25.725 ~ m}

The difference in the two ball's height after 0.500 s is:

\Delta h = 25.725 ~ m - 11.025 ~ m

\large {\boxed {\Delta h = 14.7 ~ m} }

<h3>Learn more</h3>
  • Velocity of Runner : brainly.com/question/3813437
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Kinematics

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle

6 0
3 years ago
GP A sinusoidal wave traveling in the negative x direction (to the left) has an amplitude of 20.0 cm, a wavelength of 35.0 cm, a
SIZIF [17.4K]

The period of the wave is determined as 0.083 seconds.

<h3>What is period of a wave?</h3>

The period of a wave is the time taken by a particle of the medium to complete one vibration.

<h3>Period of the wave</h3>

The period of the wave is calculated as follows;

T = 1/f

where;

  • T is the period of the wave
  • f is frequency of the wave

T = 1/12

T = 0.083 seconds

Thus, the period of the wave is determined as 0.083 seconds.

Learn more about period of a wave here: brainly.com/question/18818486

#SPJ4

8 0
1 year ago
Other questions:
  • A ball is thrown horizontally from the roof of a building 7.8 m tall and lands 9.5 m from the base. what was the ball's initial
    8·1 answer
  • What is the net force on this object?
    8·2 answers
  • A disk rolls along a flat surface at a constant speed of 10 m/s. Its diameter is 0.5 m. At a particular instant, point P on the
    7·1 answer
  • Relative to the distance of an object in front of a plane mirror, how far behind the mirror is the image?
    7·1 answer
  • 43.278 kg - 28.1 g use significant figures rule
    8·1 answer
  • In a fast-pitch softball game the pitcher is impressive to watch, as she delivers a pitch by rapidly whirling her arm around so
    15·1 answer
  • Evaporation is a process that requires energy to occur
    8·1 answer
  • Which of the following will stay constant, no matter if the substance is in the solid, liquid, or gas state?
    12·1 answer
  • Are 50% of psychologists clinicians?
    8·1 answer
  • How do I calculate the frequency of an observer
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!