The valence electrons increase as you move left to right.
Answer:
the final temperature = 74.33°C
Explanation:
Using the expression Q = mcΔT for the heat transfer and the change in temperature .
Here ;
Q = heat transfer
m = mass of substance
c = specific heat
ΔT = the change in temperature
The heat Q required to change the phase of a sample mass m is:
Q = m
where;
is the latent heat of vaporization.
From the question ;
Let M represent the mass of the coffee that remains after evaporation is:
ΔT = 
where;
m = 2.50 g
M = (240 - 2.50) g = 237.5 g
= 539 kcal/kg
c = 1.00kcal/kg. °C
ΔT = 
ΔT = 5.67°C
The final temperature of the coffee is:
ΔT
where ;
= initial temperature = 80 °C
= (80 - 5.67)°C
= 74.33°C
Thus; the final temperature = 74.33°C
Answer:
50m; 0m/s.
Explanation:
Given the following data;
Initial velocity = 20m/s
Acceleration, a = - 4m/s²
Time, t = 5secs
To find the displacement, we would use the second equation of motion;

Substituting into the equation, we have;



S = 50m
Next, to find the final velocity, we would use the third equation of motion;
Where;
- V represents the final velocity measured in meter per seconds.
- U represents the initial velocity measured in meter per seconds.
- a represents acceleration measured in meters per seconds square.
<em>Substituting into the equation, we have;</em>
V = 0m/s
<em>Therefore, the displacement of the bus is 50m and its final velocity is 0m/s.</em>
Answer:
CB = 4.45 x 10⁻⁹ F = 4.45 nF
Explanation:
The capacitance of a parallel plate capacitor is given by the following formula:
C = ε₀A/d
where,
C = Capacitance
ε₀ = Permeability of free space
A = Area of plates
d = Distance between plates
FOR CAPACITOR A:
C = CA = 17.8 nF = 17.8 x 10⁻⁹ F
A = A₁
d = d₁
Therefore,
CA = ε₀A₁/d₁ = 17.8 x 10⁻⁹ F ----------------- equation 1
FOR CAPACITOR B:
C = CB = ?
A = A₁/2
d = 2 d₁
Therefore,
CB = ε₀(A₁/2)/2d₁
CB = (1/4)(ε₀A₁/d₁)
using equation 1:
CB = (1/4)(17.8 X 10⁻⁹ F)
<u>CB = 4.45 x 10⁻⁹ F = 4.45 nF</u>
This would be a physical change because it can change back to its original form. This is like ripping paper. You can piece it back together and it still is paper.
The opposite of this is chemical change. Chemical change means the product has been changed completely like burning paper. The paper has now been turned to ash and it's impossible to change this back to its original form.