Can't help because APPARENTLY there is a picture that goes along with the questions. Post it and I can help.
Answer:
d. 3 signals: a singlet, a doublet, and a septet
Explanation:
In this case, we can start with the structure of
. When we draw the molecule we will obtain <u>2-methoxypropane</u> (see figure 1).
In 2-methoxypropane we will have three signals. The signal for the
groups in the left, the
and the
in the right. Lets analyse each one:
-)
in the right
In this carbon, we dont have any hydrogen as neighbors. Therfore we will have <u>singlet</u> signal in this carbon.
-)
In this case, we have 6 hydrogen neighbors ( the two methyl groups in the left). So, if we follow the <u>n + 1 rule</u> (where n is the amount of hydrogen neighbors):
For this carbon we will have a <u>septet</u>.
-)
in the left
In this case we have only 1 hydrogen neighbor (the hydrogen in
). So, if we use the n+1 rule we will have:
We will have a doublet
With all this in mind the answer would be:
<u>d. 3 signals: a singlet, a doublet, and a septet
</u>
<u />
See figure 2 to further explanations
54 mL Ba(OH)2x(0.101 mol Ba(OH)2/1000 mL) x (2 mol OH-/ 1 mol Ba(OH)2 ) = 0.0109 mol OH-
0.0109 mol OH-x (1mol HCl/ 1 mol OH- ) = 0.0109 mol HCl
0.109 mol HCl/(0.130 mol/L HCl) = 0.0839 L HCl
0.0839 L HCl * 1000mL = 83.9 mL of 0.130 M HCl
Answer:
CH3CH2CH3
Explanation:
Dipole moment is the measure of the polarity of a chemical bond. It is the extent of charge separation in a molecule.
Dipole moment is the product of the magnitude of charge and the distance separating the charges from each other.
The molecule having the lowest dipole moment among the options is the molecule that has the least polarity. The least polar molecule among the options is CH3CH2CH3, it has no polar bonds in its structure.
Answer:
Ca(OH)2 will not precipitate because Q<Ksp
Explanation:
Ksp for Ca(OH)2 has already been stated in the question as 8.0 x 10-8mol2dm-6
The value of the reaction quotient depends heavily on the concentration of the reactants. As the initial concentration of the calcium carbide decreases considerably, the reaction quotient decreases until Q<Ksp hence the Ca(OH)2 will not precipitate from solution.
The reaction equation is:
CaC₂(s) + H₂O ⇒ Ca(OH)₂ + C₂H₂
From
Ca(OH)2= Ca2+ + 2OH-
Concentration of solution= 0.064×1/64= 1×10-3
Since [Ca2+] = 1×10-3
[OH-]= (2×10-3)^2= 4×10^-6
Hence Q= 4×10^-9
This is less than the Ksp hence the answer.