Answer: a) The technology that deals with the generation, control and transmission of power using pressurized fluids
Explanation: Fluid power is defined as the fluids which are under pressure and then are used for generation,control and transmit the power. Fluid power systems produces high forces as well as power in small amount . These systems usually tend to have better life if maintained properly. The force that are applied on this system can be monitored by gauges as well as meter.
Answer:
d. The company uses role-based access control and her user account hasn't been migrated into the correct group(s) yet
Explanation:
Since Deidre is accessing her e-mail there appears to be nothing wrong with her account or password. Since her role is new, most likely the problem is associated with her new role.
Answer:
a) it is periodic
N = (20/3)k = 20 { for K =3}
b) it is Non-Periodic.
N = ∞
c) x(n) is periodic
N = LCM ( 5, 20 )
Explanation:
We know that In Discrete time system, complex exponentials and sinusoidal signals are periodic only when ( 2π/w₀) ratio is a rational number.
then the period of the signal is given as
N = ( 2π/w₀)K
k is least integer for which N is also integer
Now, if x(n) = x1(n) + x2(n) and if x1(n) and x2(n) are periodic then x(n) will also be periodic; given N = LCM of N1 and N2
now
a) cos(2π(0.15)n)
w₀ = 2π(0.15)
Now, 2π/w₀ = 2π/2π(0.15) = 1/(0.15) = 1×20 / ( 0.15×20) = 20/3
so, it is periodic
N = (20/3)k = 20 { for K =3}
b) cos(2n);
w₀ = 2
Now, 2π/w₀ = 2π/2) = π
so, it is Non-Periodic.
N = ∞
c) cos(π0.3n) + cos(π0.4n)
x(n) = x1(n) + x2(n)
x1(n) = cos(π0.3n)
x2(n) = cos(π0.4n)
so
w₀ = π0.3
2π/w₀ = 2π/π0.3 = 2/0.3 = ( 2×10)/(0.3×10) = 20/3
∴ N1 = 20
AND
w₀ = π0.4
2π/w₀ = 2π/π0. = 2/0.4 = ( 2×10)/(0.4×10) = 20/4 = 5
∴ N² = 5
so, x(n) is periodic
N = LCM ( 5, 20 )
Answer:
Planes can fly because they have wings and jet turbines and boats cant they need wings and planes cant float because there is to much weight
Answer:
Timing Diagrams 15 pts. A 10 MHz clock that generates a 0 to 5V pulse train with a 30% duty cycle is connected to input X of a two input OR gate that has a 20nS propagation delay. The clock also goes to an inverter with a 10 ns propagation delay. The output of the inverter goes to the Y input of the OR gate. a) Draw the circuit. 2 pts. b) Plot the output of the clock for two cycles. Show times and voltages. 5 pts. c) On the same page as part (b) plot the output of the inverter. Show times and voltages. 3 pts. d) On the same page as parts (b & c) plot the output of the OR gate. Show times and voltages. 5 pts.