Answer:

Explanation:
From the question we are told that:
Number of turns 

Conductor each with side length 
Current 
Magnetic field
Generally the equation for the total magnetic moment M is mathematically given by



Boy X and Boy Y both move backward in opposite directions.
Answer:
x = 0.775m
Explanation:
Conceptual analysis
In the attached figure we see the locations of the charges. We place the charge q₃ at a distance x from the origin. The forces F₂₃ and F₁₃ are attractive forces because the charges have an opposite sign, and these forces must be equal so that the net force on the charge q₃ is zero.
We apply Coulomb's law to calculate the electrical forces on q₃:
(Electric force of q₂ over q₃)
(Electric force of q₁ over q₃)
Known data
q₁ = 15 μC = 15*10⁻⁶ C
q₂ = 6 μC = 6*10⁻⁶ C
Problem development
F₂₃ = F₁₃
(We cancel k and q₃)

q₂(2-x)² = q₁x²
6×10⁻⁶(2-x)² = 15×10⁻⁶(x)² (We cancel 10⁻⁶)
6(2-x)² = 15(x)²
6(4-4x+x²) = 15x²
24 - 24x + 6x² = 15x²
9x² + 24x - 24 = 0
The solution of the quadratic equation is:
x₁ = 0.775m
x₂ = -3.44m
x₁ meets the conditions for the forces to cancel in q₃
x₂ does not meet the conditions because the forces would remain in the same direction and would not cancel
The negative charge q₃ must be placed on x = 0.775 so that the net force is equal to zero.
Answer:
Option C. 210 J.
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 0.75 Kg
Height (h) = 12 m
Velocity (v) = 18 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Total Mechanical energy (ME) =?
Next, we shall determine the potential energy of the plane. This can be obtained as follow:
Mass (m) = 0.75 Kg
Height (h) = 12 m
Acceleration due to gravity (g) = 9.8 m/s²
Potential energy (PE) =?
PE = mgh
PE = 0.75 × 9.8 × 12
PE = 88.2 J
Next, we shall determine the kinetic energy of the plane. This can be obtained as follow:
Mass (m) = 0.75 Kg
Velocity (v) = 18 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 0.75 × 18²
KE = ½ × 0.75 × 324
KE = 121.5 J
Finally, we shall determine the total mechanical energy of the plane. This can be obtained as follow:
Potential energy (PE) = 88.2 J
Kinetic energy (KE) = 121.5 J
Total Mechanical energy (ME) =?
ME = PE + KE
ME = 88.2 + 121.5
ME = 209.7 J
ME ≈ 210 J
Therefore, the total mechanical energy of the plane is 210 J.