Answer:
a) 0.1832 A
b) 11.91 Volts
c) 2.18 Watt , 0.0168 Watt
Explanation:
(a)
R = external resistor connected to the terminals of the battery = 65 Ω
E = Emf of the battery = 12.0 Volts
r = internal resistance of the battery = 0.5 Ω
i = current flowing in the circuit
Using ohm's law
E = i (R + r)
12 = i (65 + 0.5)
i = 0.1832 A
(b)
Terminal voltage is given as
= i R
= (0.1832) (65)
= 11.91 Volts
(c)
Power dissipated in the resister R is given as
= i²R
= (0.1832)²(65)
= 2.18 Watt
Power dissipated in the internal resistance is given as
= i²r
= (0.1832)²(0.5)
= 0.0168 Watt
Answer:
221.17 kJ
Explanation: Note the heat of vaporization is in kJ/mol,then to determine the number of moles of water: divide the mass by 18. Then multiply the number of moles by the molar heat of vaporization of water.
N = 97.6 ÷ 18
Q=molar heat *moles
Q = (40.79) * (97.6 ÷ 18)
This is approximately 221.17 kJ
Answer:An emission line spectrum consists of bright lines on a dark background, while an absorption line spectrum consists of dark lines on a rainbow background.
Explanation:
Answer:
Explanation:
The formula that you are working with is F = m*a
Since mass is one part of the formula if you increase the mass, you are going to increase the force.
The second one is much more difficult to answer because it is basically incomplete. This is one way to interpret it. If you start at a certain speed and increase during a known time period then effectively you are defining acceleration which is "a" in the formula.
Without those modifications, there is no answer.