The force applied on the spring to stretch it is 13.2 N.
Hooke's law is a law of elasticity discovered by the English scientist Robert Hooke in 1660 that states that the displacement or size of a deformation is directly proportional to the deforming force or load for relatively small deformations of an object. When the load is removed under these conditions, the object returns to its original shape and size.
According to Hooke's law, F = k*e
where F is the force on the spring
k is force constant
and e is extension
F = (110)*(0.12)
F = 13.2 N
For more information on Hooke's law, visit :
brainly.com/question/13348278
#SPJ4
Answer: 3 m/s
Explanation:
We can solve the problem by using the law of conservation of momentum: during the collision between the two balls, the total momentum of the system before the collision and after the collision must be conserved:

The total momentum before the collision is given only by the cue ball, since the solid ball is initially at rest, therefore

So, the final total momentum will also be

And the total momentum after the collision is given only by the solid ball, since the cue ball is now at rest, therefore:

from which we find the velocity of the solid ball

Question 4 is true, question 5 is B.
Answer:

Explanation:
One mole of a substance contains the same amount of representative particles. These particles can be atoms, molecules, ions, or formula units. In this case, the particles are atoms of titanium.
Regardless of the particles, there will always be <u>6.02*10²³</u> (also known as Avogadro's Number) particles in one mole of a substance.
Therefore, the best answer for 1 mole of titanium is D. 6.02*10²³ atoms.
Answer:s=0.68 m
Explanation:
Given
Inclination 
Speed of block(u)=1.6 m/s
Coefficient of kinetic Friction 
deceleration provided by friction=g\sin \theta -\mu _kg\cos \theta [/tex]
Using 
Final velocity v=0


s=0.68 m