<h3>

</h3><h3>Given</h3>
v = 20m\s
a = 3m\s^2
t = 4sec
Firstly we have to find u
a = 
3m\s =
12m\s = 20 - u
20 - u = 12m\s
- u = -8
u = 8
Now we can easily find distance by using second equation of motion
s = ut + 1\2 at^2
s = 8(4) + 1\2(3)(16)
s = 32 + 24
s = 56
So distance is 56 m\s hope it helps
By unplugging unused devices, by turning off any unused lights, and by switching your lightbulbs to something more energy efficient.
First, we have a change in the velocity from 85 to 164 m/s in 10 sec.
Then, we calculate the <u>acceleration </u>as:

Hence we need to calculate the velocity of the space vehicle at t = 2 sec using the first equation of motion:

Then, using the second equation of motion to calculate the distance:


Answer:
Here
Explanation:
They don't have free electrons moving around (delocalised electrons) so they can't conduct heat and electricity which gives them a property of good insulators. The insulators stop us having an electric shock because they don't conduct electricity as we use them to insulate metal wires and other metallic things. can i have brainliest now pls!
Answer:
The force exerted is 318.86 N
Explanation:
The force exerted by such a stream is calculated by multiplying the mass flow rate of water by the velocity of the stream of water.
mass flow rate = 21.4 kg/s
velocity = 14.9 m/s
Force exerted = 21.4 kg/s × 14.9 m/s = 318.86 kgm/s^2 = 318.86 N