B. At the equivalence point of a titration of the [H+] concentration is equal to 7.
<h3>What is equivalence point of a titration?</h3>
The equivalence point of a titration is a point in titration at which the amount of titrant added is just enough to completely neutralize the analyte solution.
At the equivalence point in an acid-base titration, moles of base equals moles of acid and the solution only contains salt and water.
At the equivalence point, equal amounts of H+ and OH- ions combines as shown below;
H⁺ + OH⁻ → H₂O
The pH of resulting solution is 7.0 (neutral).
Thus, the pH at the equivalence point for this titration will always be 7.0.
Learn more about equivalence point here: brainly.com/question/23502649
#SPJ1
Method:
1) Find the atomic number in a periodic table: the number of electrons equal the atomic number
2) Use Aufbau rule
Element atomic number electron configuration
<span>
P 15 1s2 2s2 2p6 3s2 3p3
Ca 20 </span><span><span>1s2 2s2 2p6 3s2 3p6 4s2
</span>Si 14</span><span> 1s2 2s2 2p6 3s2 3p2
S 16</span><span><span> 1s2 2s2 2p6 3s2 3p4
</span>Ga 31. </span><span><span> 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p</span> </span>
Here, we should use combined gas law which can be derived from combined gas law, “PV=nRT”. Rearranging, we can get PV/T=nR. Then we can set the two states in the problem together to get
P1V1/T1 = P2V2/T2
Then just plug in and solve algebraically.
Hope this helps
Answer:
c 18.0ml
Explanation:
The average mass of one H2O molecule is 18.02 amu. The number of atoms is an exact number, the number of mole is an exact number; they do not affect the number of significant figures. The average mass of one mole of H2O is 18.02 grams. This is stated: the molar mass of water is 18.02 g/mol.
Answer:
light is the result of electrons moving between defined energy levels in an atom called shells.
Explanation:
when something exited an atom like collision with another atom or a chemical reaction, an electron may absorb energy boosting it to a higher level shell.