Answer:

Explanation:
Complete ionic equation : In complete ionic equation, all the substance that are strong electrolyte and present in an aqueous are represented in the form of ions.
Net ionic equation : In the net ionic equations, we are not include the spectator ions in the equations.
Only the species which are present in aqueous state dissociate.
Spectator ions : The ions present on reactant and product side which do not participate in a reactions. The same ions present on both the sides.
(a)
The balanced molecular equation will be,
The complete ionic equation in separated aqueous solution will be,
In this equation the species present are,
are the spectator ions.
Hence, the net ionic equation contains specie is

the answer is fresh water
Answer:
Empirical formula: CH₃O
Empirical formula mass = 31 g/mol
Explanation:
Data Given:
Molecular Formula = C₁₀H₃₀O₁₀
Empirical Formula = ?
Empirical Formula mass =
Solution
Empirical Formula:
Empirical formula is the simplest ration of atoms in the molecule but not all numbers of atoms in a compound.
So,
The ratio of the molecular formula should be divided by whole number to get the simplest ratio of molecule
As
C₁₀H₃₀O₁₀ Consist of 10 Carbon (C) atoms, 30 Hydrogen (H) atoms, and 10 Oxygen (O) atoms.
Now
Look at the ratio of these three atoms in the compound
C : H : O
10 : 30 : 10
Divide the ratio by two to get simplest ratio
C : H : O
10/10 : 30/10 : 10/10
1 : 3 : 1
So for the empirical formula the simplest ratio of carbon to hydrogen to oxygen is 1:3:1
So the empirical formula will be
Empirical formula of C₁₀H₃₀O₁₀ = CH₃O
Now
To find the empirical formula mass in g/mol
Formula mass:
Formula mass is the total sum of the atomic masses of all the atoms present in a formula unit.
**Note:
if we represent the molar mass of the empirical formula for one mol in grams then it is written as g/mol
So,
As the empirical formula of C₁₀H₃₀O₁₀ is CH₃O
Then Its empirical formula mass will be
CH₃O
Atomic Mass of C = 12
Atomic Mass of H = 3
Atomic Mass of O = 16
Total Molar mass of CH₃O
CH₃O = 12 + 3(1) + 16
CH₃O = 12 + 3 + 16
CH₃O = 31 g/mol
Chlorine is a halogen and is very reactive and unstable. If released in an elemental form (Cl2), it would react with other substances immediately. However, <span>chlorofluorocarbons (CFCs) which contain chlorine are unreactive and when released they eventually end up in the upper atmosphere still "intact". In the upper atmosphere, sunlight is more intense and is able to break apart CFC, releasing the highly reactive chlorine which in turns destroys ozone which is more abundant in the upper atmosphere (stratosphere). </span>