It is an ideal gas therefore we can use the ideal gas equation to solve the problem. The ideal gas equation is expressed as PV = nRT. First, we solve the amount of the gas in moles using the said equation and the first conditions.
(2.0 atm) (5.0 x 10^3 cm^3) = n (82.0575 atm.cm^3/mol.K)(215 K)
n=0.5668 mol
Using the second conditions given, we obtain the new pressure.
P (4.0 x 10^3) = 0.5668 x <span>82.0575 x 265
P= 3.08 atm</span>
<h3>
Answer: 4.25 g/ml %</h3>
Explanation:
weight/volume percentage concentration = (mass in g ÷ volume) × 100
= (0.850 g ÷ 20 ml) × 100
= 4.25 g/ml %
∴ the weight/volume percentage concentration of the sucrose solution is 4.25 g/ml %.
Answer: The new volume be if you put it in your freezer is 1.8 L
Explanation:
To calculate the final temperature of the system, we use the equation given by Charles' Law. This law states that volume of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial volume and temperature of the gas.
are the final volume and temperature of the gas.
We are given:

Putting values in above equation, we get:

The new volume be if you put it in your freezer is 1.8 L
<h3>
Answer:</h3>
4.70 × 10²⁴ atoms Ge
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
7.80 mol Ge
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
= 4.69716 × 10²⁴ atoms Ge
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
4.69716 × 10²⁴ atoms Ge ≈ 4.70 × 10²⁴ atoms Ge