Answer:
The percentage efficiency of the electrical element is approximately 82.186%
Explanation:
The given parameters are;
The thermal energy provided by the stove element,
= 3.34 × 10³ J
The amount thermal energy gained by the kettle,
= 5.95 × 10² J
The percentage efficiency of the electrical element in heating the kettle of water, η%, is given as follows;

Therefore, we get;

The percentage efficiency of the electrical element, η% ≈ 82.186%.
Answer:
V₂ = 2.96 L
Explanation:
Given data:
Initial volume = 2.00 L
Initial temperature = 250°C
Final volume = ?
Final temperature = 500°C
Solution:
First of all we will convert the temperature into kelvin.
250+273 = 523 k
500+273= 773 k
According to Charles's law,
V∝ T
V = KT
V₁/T₁ = V₂/T₂
V₂ = T₂V₁/T₁
V₂ = 2 L × 773 K / 523 k
V₂ = 1546 L.K / 523 k
V₂ = 2.96 L
The neutral grain spirit is essentially known as rectified spirits or ethyl alcohol.
<h3>Meaning of
neutral grain spirit</h3>
neutral grain spirit can be defined as raw material that is very concentrated with alcohol used to produce strong alcoholic products.
neutral grain spirit as the name implies is neutral in nature that is it can be blended with any other alcoholic product.
In conclusion, The neutral grain spirit is essentially known as rectified spirits or ethyl alcohol.
Learn more about ethyl alcohol: brainly.com/question/1049383
#SPJ11
Answer:
Temporary in nature.
No new substance is formed.
Explanation:
Temporary in nature: Does not affect the internal structure of a substance, only the molecules are rearranged.
No new substance is formed: Most of the physical changes are reversible. We can obtain the substance back even after the change.
hope this helps
have an awesome day -TJ
Answer:
Number of molecules = 1.8267×10^20
Explanation:
From the question, we can deuced that the gases behave ideally, the we can make use of the ideal gas equation, which is expressed below;
PV = nRT
where
P =pressure
V =volume
n = the number of moles
R is the gas constant equal to 0.0821 L·atm/mol·K
T is the absolute temperature
Given:
P = 6.75 atm;
T = 290.0 k,
; V = 1.07 cm³ = 0.001 L
( 6.75 atm)(0.00107 L) = n(0.0821 L·atm/mol·K)(290K)
n = 3.0335167*10^-4 moles
But there are 6.022×10²³ molecules in 1 mole,
Number of molecules = 1.8267×10^20