To solve this problem we will proceed to convert the Intensity Units given to a normal system, that is, to standardize their value. Later we will use the value of the electric field according to the RMS electric field, to find it.
Finally the magnetic field would be given based on the previously found electric field, depending on the speed of light:
The value of the intensity is:

The maximum value of the electric field is,


Where,
I = Intensity,
= Permeability constant
c = Speed of light
Replacing,


The maximum value of the magnetic field is,



Therefore the maximum magnetic field is 
Answer:
The wave velocity is 1.3736
Explanation:
A plot of inverse of wavelength (λ) versus frequency (f), can be analyzed as follows;
The vertical axis will be 1/λ and the horizontal axis will be f
slope = (Δ1/λ)/(Δf)
= 1/(fλ)
∴ 1/(fλ) = 0.728
From wave equation, V = fλ
where;
V is the wave velocity
f is the frequency of the wave
λ is the wavelength
1/(fλ) = 0.728
1/(V) = 0.728
V = (0.728)⁻¹
V = 1.3736
Therefore, the wave velocity is 1.3736
The equation we can use here is:
v^2 = v0^2 + 2 a d
where v is final velocity, v0 is intial velocity, a is
acceleration and d is distance
14^2 = 8^2 + 2 a (44)
<span>a = 1.5 m/s^2</span>
Answer:
The car that is accelerating is B a car that rounds a curve at a constant speed
Explanation:
Although all of the cars are at a constant speed or not moving acceleration is the change in speed or the change of directions therefore making the only car changing directions your answer.