Answer:
A.) 3605.6 N
B.) 33.7 degree
Explanation:
To find the result force acting on the wing of the airplane, we need to resolve the forces into x and y components
Resolving into x component :
Sum of forces = 3500 - 500 = 3000N
Resolving into y component:
Sum of forces = 2000N
Resultant force Fr = sqrt ( Fx^2 + Fy^2)
Fr = sqrt ( 3000^2 + 2000^2 )
Fr = sqrt ( 9000000 + 4000000 )
Fr = sqrt ( 13000000)
Fr = 3605.6 N
Therefore, resultant force acting on the wing is 3605.6 N
The direction of the vector will be:
Tan Ø = Fy / Fx
Substitute Fx and Fy into the formula
Tan Ø = 2000 / 3000
Tan Ø = 0.66666
Ø = tan^-1(0. 66666)
Ø = 33.7 degree.
Answer:
The heat transferred into the system is 183.5 J.
Explanation:
The first law of thermodynamics relates the heat transfer into or out of a system to the change of internal and the work done on the system, through the following equations.
ΔU = Q - W
where;
ΔU is the change in internal energy
Q is the heat transfer into the system
W is the work done by the system
Given;
ΔU = 155 J
W = 28.5 J
Q = ?
155 = Q - 28.5
Q = 155 + 28.5
Q = 183.5 J
Therefore, the heat transferred into the system is 183.5 J.
Answer:

Explanation:
From the question we are told that
Weight 
Altitude 
Speed 
Generally the equation for Potential energy ids mathematically given as




Answer: It states that the BCD equivalent would be 0001000100000000000100010001000100010000000100000001000000000001.
Answer:
4.535 N.m
Explanation:
To solve this question, we're going to use the formula for moment of inertia
I = mL²/12
Where
I = moment of inertia
m = mass of the ladder, 7.98 kg
L = length of the ladder, 4.15 m
On solving we have
I = 7.98 * (4.15)² / 12
I = (7.98 * 17.2225) / 12
I = 137.44 / 12
I = 11.45 kg·m²
That is the moment of inertia about the center.
Using this moment of inertia, we multiply it by the angular acceleration to get the needed torque. So that
τ = 11.453 kg·m² * 0.395 rad/s²
τ = 4.535 N·m