It is false, hope this helps!
Answer:
230hz
Explanation:
Hello,
To solve this question, we gave to use the relationship between velocity-frequency-wavelength to find the frequency in this question.
V = Fλ
V = velocity or speed of the wave
F = frequency of the wave
λ = wavelength of the wave
Data;
V = 414m/s
λ = 1.8m
f = ?
V = fλ
f = v/λ
f = 414/1.8
f = 230hz
The frequency of the wave is 230hz
Answer:
0.01836 M
Explanation:
Again the reaction equation is;
Fe(s) + Mn2+(aq) → Fe2+(aq) + Mn(s)
E°cell= 0.77 V
Ecell= 0.78 V
[Mn2+] = 0.040 M
[Fe2+] = the unknown
n=2
From Nernst's equation;
Ecell= E°cell- 0.0592/n log Q
0.78= 0.77 - 0.0592/2 log [Fe2+] /[0.040]
0.78-0.77= - 0.0592/2 log [Fe2+] /[0.040]
0.01/ -0.0296= log [Fe2+] /[0.040]
-0.3378= log [Fe2+] /[0.040]
Antilog(-0.3378) = [Fe2+] /[0.040]
0.459= [Fe2+] /[0.040]
[Fe2+] = 0.459 × 0.040
[Fe2+] = 0.01836 M
I would personally convert the 12 mg to g so I could see what I was working with. So 12 mg to grams is 0.012 g...
so 1 tablet is 0.012g. the patient needs 0.024 g.
so 0.024g/0.012g = 2 tablets or 0.012g X 2 is 0.024 g
hope this helps :)
To determine which order of the reaction it is, first we need to calculate the rate of change of moles.
the data is as follows
time 0 40 80 120 160
moles 0.100 0.067 0.045 0.030 0.020
Q1)
for the first 40 s change of moles ;
= -d[A] / t
= - (0.067-0.100)/40s
= 8.25 x 10⁻⁴ mol/s
for the next 40 s
= -(0.045-0.067)/40
= 5.5 x 10⁻⁴ mol/s
the 40 s after that
= -(0.030-0.045)/40 s
= 3.75 x 10⁻⁴ mol/s
k - rate constant
and A is the only reactant that affects the rate of the reaction
rate = k [A]ᵇ
8.25 × 10⁻⁴ mol/s = k [0.100 mol]ᵇ ----1
5.5 x 10⁻⁴ mol/s = k [0.067 mol]ᵇ -----2
divide the 2nd equation by the 1st equation
1.5 = [1.49]ᵇ
b is almost equal to 1
Therefore this is a first order reaction
Q2)
to find out the rate constant(k), we have to first state the equation for a first order reaction.
rate = k[A]ᵇ
As A is the only reactant thats considered for the rate equation.
Since this is a first order reaction,
b = 1
therefore the reaction is
rate = k[A]
substituting the values,
8.25 x 10⁻⁴ mol/s = k [0.100 mol]
k = 8.25 x 10⁻⁴ mol/s /0.100mol
= 8.25 x 10⁻³ s⁻¹