The mechanics of a power plant that generally uses nuclear energy in order to generate electricity lies in the principle of nuclear fission between radioactive atoms. In addition, among its major arguments on why it is still a matter of ethical issue is because of the intensive maintenance it requires for the disposal of its radioactive wastes.
Answer:
9.1 KJ
Explanation:
First we must find the number of moles of HBr involved;
number of moles of HBr= mass of HBr/ molar mass of HBr
But molar mass of HBr= 80.91 g/mol
Given mass of HBr from the question= 20.1g
Hence;
Number of moles of HBr= 20.1 g/80.91g
Number of moles of HBr= 0.25 moles of HBr
If 2 moles of HBr has a heat of formation of 72.80KJ
Then 0.25 moles of HBr will have a heat of formation of 0.25× 72.80/2= 9.1 KJ
Therefore; 20.1 g of HBr will have a heat of formation of 9.1 KJ
Medium about 3 second? Not sure lol just need more points honestly lol
The grams of hydrogen gas can be burned if 40. liters of oxygen at 200. k and 1.0 atm is 4.88 grams.
<h3>How do we calculate grams from moles?</h3>
Grams (W) of any substance will be calculated by using their moles (n) through the following equation:
M = molar mass
And moles of the gas will be calculated by using the ideal gas equation as:
P = pressure = 1atm
V = volume = 40L
n = moles = ?
R = universal gas constant = 0.082 L.atm / K.mol
T = temperature = 200K
On putting these values on the above equation, we get
n = (1)(40) / (0.082)(200) = 2.439 = 2.44 moles
- Now grams of hydrogen gas will be calculated by using the first equation as:
W = (2.44mol)(2g/mol) = 4.88g
Hence required mass of hydrogen gas is 4.88g.
To know more about ideal gas equation, visit the below link:
brainly.com/question/15046679
#SPJ1