Answer:
t=0.47s
Explanation:
the ball has uniformly accelerated movement due to gravity
Vo=initial speed=4.6m/s
g=gravity=-9.8m/s^2
Vf=final speed=0, the player must wait for the ball to stop. so the final speed will be 0
we can use the following ecuation
T=(Vf-Vo)/g
T=(0-4.6)/-9.8m/s^2
T=0.47s
Three times larger I think.
Answer:
The percentage of the mechanical energy of the oscillator lost in each cycle is 6.72%
Explanation:
Mechanical energy (Potential energy, PE) of the oscillator is calculated as;
PE = ¹/₂KA²
During the first oscillation;
PE₁ = ¹/₂KA₁²
During the second oscillation;
A₂ = A₁ - 0.0342A₁ = 0.9658A₁
PE₂ = ¹/₂KA₂²
PE₂ = ¹/₂K (0.9658A₁)²
PE₂ = (0.9658²)¹/₂KA₁²
PE₂ = (0.9328)¹/₂KA₁²
PE₂ = 0.9328PE₁
Percentage of the mechanical energy of the oscillator lost in each cycle;

Therefore, the percentage of the mechanical energy of the oscillator lost in each cycle is 6.72%
Magnetic fields are areas where an object exhibits a magnetic influence. The fields affect neighboring objects along things called magnetic field lines. A magnetic object can attract or push away another magnetic object. You also need to remember that magnetic forces are NOT related to gravity. The amount of gravity is based on an object's mass, while magnetic strength is based on the material that the object is made of.
Answer: Friction
Explanation: Friction caused m by the ball rubbing against the grass and ground cause it to lose energy in the form of thermal energy and slow down