Answer:
(a). Energy is 64,680 J
(b) velocity is 51.43m/s
(c) velocity in mph is 115.0mph
Explanation:
(a).
The potential energy
of the payload of mass
is at a vertical distance
is
.
Therefore, for the payload of mass
at a vertical distance of
, the potential energy is


(b).
When the payload reaches the bottom of the shaft, all of its potential energy is converted into its kinetic energy; therefore,




(c).
The velocity in mph is


The answer would be B because humans cannot see electrons so we visualize the electrons due to the theory
Answer:
The work done shall be 14715 Joules
Explanation:
The work done by a force 'F' in a displacement 'dy' is given by

At any position 'y' the weight shall be sum of weft of water and weight of string

Thus applying values we get

De broglie wavelength,
, where h is the Planck's constant, m is the mass and v is the velocity.

Mass of hydrogen atom, 
v = 440 m/s
Substituting
Wavelength 

So the de broglie wavelength (in picometers) of a hydrogen atom traveling at 440 m/s is 902 pm