1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataly_w [17]
3 years ago
11

Work is done if you carry a plant across a room at constant velocity. True False

Physics
2 answers:
BlackZzzverrR [31]3 years ago
5 0

it is false hope this helps

chubhunter [2.5K]3 years ago
3 0

Answer:

false

Explanation:

You might be interested in
The description for a certain brand of house paint claims a coverage of 475 ft²/gal.
AlexFokin [52]

Answer:

(a) 11.66 square meters per liter

(b) 11657.8 per meters

(c) 0.00211 gal per square feet

Explanation:

(a) 475ft^2/gal = 475ft^2/gal × (1m/3.2808ft)^2 × 1gal/3.7854L = 11.66m^2/L

(b) 475ft^2/gal = 475ft^2/gal × (1m/3.2808ft)^2 × 264.17gal/1m^3 = 11657.8/m

(c) Inverse of 475ft^2/gal = 1/475ft^3/gal = 0.00211gal/ft^3

8 0
3 years ago
What is the relation between inertia and mass?
aleksandr82 [10.1K]

Answer:

The tendency of an object to resist changes in its state of motion varies with mass. Mass is that quantity that is solely dependent upon the inertia of an object. The more inertia that an object has, the more mass that it has. A more massive object has a greater tendency to resist changes in its state of motion.

Explanation:

8 0
3 years ago
Why does a black hole have a stronger gravitational pull than the star that collapse to form it?​
Studentka2010 [4]

Answer:

We consider Black Holes as an object that possesses extreme gravitational pull, but wait aren’t they have the same mass(or less) as that of their parent star. And we know that gravitational pull ‘F’ is directly proportional to the mass of an object, so if the mass is same(or less) then why do black holes have stronger gravity than the stars they evolved from.

The above consideration that F is directly proportional to the mass is partially correct, one should also mention that F is also inversely proportional to the square of the distance between the considered objects.

F = G*(M*m)/(r^2)

Where:

· F is the force acting on you due to star

· M is the mass of Parent star / Black Hole

· m is the mass of an observer, here it is you

· r is the radial distance between the star and you

We know that black hole formed, has much smaller size than that of its parent star and all that mass is compressed to a much smaller scale. If you consider a Star as having a size of an earth then the black hole formed will have a size of small city.

Let us say that you are standing at an r distance away from a star (r>R1), where R1 is the radius of the star, of course (R1>R2), where R2 is the radius of Black Hole.

The Force by which the star in case 1 attracts you will be equal(or less) to the force by which black hole in case 2. So, there is nothing increase in gravitational pull, it is same(or less) as that of the parent star.

Wait a minute, then why people say that black holes have massive gravitational pull.

The gravitational pull increases as we move closer to the black hole, and when we are at its surface, it is enormous as compare to its star surface, because of the difference in the size.

We know that gravitational pull not only depends upon the mass but also depends upon the radial distance between the concerned objects here, it is you and the black hole.

Here, the size of the black hole is much smaller than that of its parent star, i.e (R1>>>R2), and thus we get F1<<<F2, and that is why we say that the black hole has enormous gravitational pull, such that nothing can escape, not even light.

8 0
3 years ago
Two astronauts are playing catch in a zero gravitational field. Astronaut 1 of mass m1 is initially moving to the right with spe
Ede4ka [16]

The final velocity (v_1_f) of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut (v_2_f) to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts <em>after throwing the ball</em>.

The given parameters;

  • Mass of the first astronaut, = m₁
  • Mass of the second astronaut, = m₂
  • Initial velocity of the first astronaut, = v₁
  • Initial velocity of the second astronaut, = v₂ > v₁
  • Mass of the ball, = m
  • Speed of the ball, = u
  • Final velocity of the first astronaut, = v_f_1
  • Final velocity of the second astronaut, = v_f_2

The final velocity of the first astronaut relative to the second astronaut after throwing the ball is determined by applying the principle of conservation of linear momentum.

m_1v_1 + m_2v_2 = m_2v_2_f + m_1v_1_f

if v₂ > v₁, then v_1_f > v_2_f, to conserve the linear momentum.

Thus, the final velocity (v_1_f) of the first astronaut will be greater than the <em>final velocity</em> of the second astronaut (v_2_f) to ensure that the total initial momentum of both astronauts is equal to the total final momentum of both astronauts after throwing the ball.

Learn more here: brainly.com/question/24424291

5 0
2 years ago
The speed at which a light aircraft can take off is 120 km/h. (A) What is the minimum constant acceleration required for the pla
kondor19780726 [428]

Answer:

A) a = 2.31[m/s^2]; B) t = 14.4 [s]

Explanation:

We can solve this problem using the kinematic equations, but firts we must identify the data:

Vf= final velocity = take off velocity = 120[km/h]

Vi= initial velocity = 0, because the plane starts to move from the rest.

dx= distance to run = 240 [m]

v_{f} ^{2} =v_{i} ^{2}+2*g*dx\\where:\\v_{f}=120[\frac{km}{h} ]*\frac{1hr}{3600sg} * \frac{1000m}{1km} =33.33[m/s]\\\\Replacing\\33.33^{2}=0+2*a*(240)\\ a=\frac{11108.88}{2*240}\\  a=2.31[m/s^2]\\

To find the time we must use another kinematic equation.

v_{f} =v_{i} +a*t\\replacing:\\33.33=0+(2.31*t)\\t=\frac{33.33}{2.31}\\ t=14.4[s]

7 0
3 years ago
Other questions:
  • A 0.50-mm-diameter hole is illuminated by light of wavelength 500 nm. What is the width of the central maximum on a screen 2.0 m
    14·1 answer
  • A wave with a frequency of 0.5 Hz and a speed of 10 m/s has a wavelength of a. 50 m. c. 20 m. b. 0.5 m. d. 0.2 m.
    15·1 answer
  • when a ball is dropped it is easy to see that earth exerts a force on it. why cant you tell that the ball exerts a force on it.
    7·1 answer
  • An antique carousel that’s powered by a large electric motor undergoes constant angular acceleration from rest to full rotationa
    8·1 answer
  • how much force (in N) is exerted on one side of an 16.2 cm by 22.9 cm sheet of paper by the atmosphere
    10·1 answer
  • Anything that causes some change in an organism
    9·1 answer
  • The scientific method is
    9·2 answers
  • I need help on this and the first person who will answer this correctly gets BRANLIST​
    14·1 answer
  • A car is moving with 15000J of energy. If the car has a mass of 1500kg, how fast is it moving?
    10·1 answer
  • Which of the following statements about lipids and carbohydrates is true?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!