Answer:
Pag-alaga ng kalikasan, pagpapakita ng mga tanawin o kagandahan ng Pilipinas
Answer:
The importance of crystal structure. The graphite-diamond mineral pair is an extreme example of the importance of crystal structure. These two very different minerals have exactly the same chemical formula (C), but the crystal structure of the two minerals is very different. In graphite, carbon atoms are bonded together along a flat plane, as shown in Figure 3.
It means that 22.5×10^5 J of heat is required to change 1 kg of water into steam.
Latent heat of vaporization is amount of energy required to change 1 gram (in this example 1 kilogram) of material from the liquid to the gaseous state at its boiling point.
Boiling point of the water is 100°C.
Joule (J) is the standard unit for energy (in this example heat).
Evaporization is phase change process in which the water changes from a liquid to a gas (water vapor). Fore example, solar radiation can be the source of energy for evaporation.
More about heat of vaporization: brainly.com/question/14679329
#SPJ4
<em>Thermal energy</em> is the sum of the kinetic and potential energies of all the particles in an object.
Assume that you have 250 gL of water and 1 kg of water at the same temperature.
Then, each water molecule has the same kinetic energy.
The larger sample contains four times as many molecules, so it contains four times as much thermal energy.
Thus, thermal energy is directly proportional to mass.
In symbols, <em>KE </em>∝ <em>m</em> or <em>KE = km</em>.
The graph of a direct proportion is a <em>straight line passing trough the origin</em>.
It should look something like the graph below.
Answer:
fundamental frequency in helium = 729.8 Hz
Explanation:
Fundamental frequency of an ope tube/pipe = v/2L
where v is velocity of sound in air = 340 m/s; λ is wave length of wave = 2L ; L is length of the pipe
To find the length of the pipe,
frequency = velocity of sound / 2L
272 = 340 / 2 L
L = 0.625 m
If the pipe is filled with helium at the same temperature, the velocity of sound will change as well as the frequency of note produced since velocity is directly proportional to frequency of sound.
Also, the velocity of sound is inversely proportional to square root of molar mass of gas; v ∝ 1/√m
v₁/v₂ = √m₂/m₁
v₁ = velocity of sound in air, v₂ = velocity of sound in helium, m₁ = molar mass of air, m₂ = molar mass of helium
340 / v = √4 / 28.8
v₂ = 340 / 0. 3727
v₂ = 912.26 m /s
fundamental frequency in helium = v₂ / 2L
fundamental frequency in helium = 912.26 / (2 x 0.625)
fundamental frequency in helium = 729.8 Hz