Answer:
Take 100 ml of a 18 molar solution. The total number of moles is (1 liter/1000 ml) 100 ml 18 moles is 1.8 moles.
1.5 moles in 1 liter so If 1.1 liters of water is added, the total volume is 1.2 liters and 1.8 moles are dissolves in it. 1.8 moles/ 1.2 liters is 1.5 moles per liter.
Answer:
The rate at which the solute dissolves will increase.
Explanation:
If a solution is stirred, the rate at which a solute dissolves would increase substantially provided the solution is not yet saturated.
Stiring would cause more of the solution to come in contact with every part of the solute. It will increase the surface area of contact for the solution to act which will shoot up the rate of reaction. Stiring helps to bring solutes in solutions into a more close contact with the molecules or compounds of the medium.
Answer:
Whether something is a molecule or not depends on the type of bond that is formed when its atoms join together. In general, electrons can be shared between atoms (a molecular bond) or electrons can be completely removed from one atom and given to another (an ionic bond). Molecules have molecular bonds.
Answer:
i think mix im um 1s 6f 4d is correct answer
Answer:
The answer is 18.12KJ is required to vaporise 48.7 g of dichloromethane at its boiling point
Explanation:
To solve the above question we have the given variable as follows
ΔHvap = heat of vaporisation of dichloromethane per mole = 31.6KJ/mole
However since the heat of vaporisation is the heat to vaporise one mole of dichloromethane, then, for 48.7 grams of dichloromethane, we have.
The number of moles of dichloromethane present = 48.7/84.93 = 0.573 moles
Therefore, the amount of heat required to vaporise 48.7 grams of dichloromethane at its boiling point is 31.6KJ/mole×0.573moles =18.12KJ