Salts that are from strong bases and strong acids do not hydrolyze. Salts that are from strong bases and weak acids do hydrolyze, which gives it a pH greater than 7. Salts of weak bases and strong acids do hydrolyze, which gives it a pH less than 7.
Answer:
1. n = 0.174mol
2. T= 26.8K
3. P = 1.02atm
4. V = 126.88L
Explanation:
1. P= 2.61atm
V = 1.69L
T = 36.1 °C = 36.1 + 273= 309.1K
R = 0.082atm.L/mol /K
n =?
n = PV / RT = (2.61x1.69)/(0.082x309.1)
n = 0.174mol
2. P = 302 kPa = 302000Pa
101325Pa = 1atm
302000Pa = 302000/101325 = 2.98atm
V = 2382 mL = 2.382L
T =?
n = 3.23 mol
R = 0.082atm.L/mol /K
T= PV /nR = (2.98x2.382)/(3.23x0.082) = 26.8K
3. P =?
V = 0.0250 m³ = 25L
T = 288K
n = 1.08mol
R = 0.082atm.L/mol /K
P = nRT/V = (1.08x0.082x288)/25 = 1.02atm
4. P = 782 torr
760Torr = 1 atm
782 torr = 782/760 = 1.03atm
V =?
T = 303K
n = 5.26 mol
R = 0.082atm.L/mol /K
V = nRT/P
V = (5.26x0.082x303)/1.03 = 126.88L
Most atoms do not. For those atoms that do not have a full valence shell (which usually would contain eight electrons, except for hydrogen and helium, where it would contain two), something has to change. So nature's tendency toward a full valence shell will lead to one of two things: The gain or loss of electrons.
Answer:
c. add coefficients as needed
Explanation:
A chemical equation is defined as the equation that shows changes in a chemical reaction. A chemical equation consist of reactant and product, reactant is at left side of the arrow and product is at right side of the arrow.
Reactant => Product
While balancing a chemical equation, the basic rule is to balance the coefficient as required. Coefficient represents the number of molecules and is used at front of a chemical symbol. Change in coefficient helps balance the number of atoms or molecules of the substances on both the sides of the arrow.
Subscripts are never allowed to change because it can change the chemical involved in the reaction.
Hence, the correct answer is "c. add coefficients as needed".
Answer : The mass of carbon and oxygen produced is 8.83 g and 23.6 g respectively.
Explanation :
Law of conservation of mass : It states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
This also means that total mass on the reactant side must be equal to the total mass on the product side.
The balanced chemical reaction will be,

As we are given:

According to the law of conservation of mass,
Total mass of
= Mass of
+ Mass of C
Total mass of
= 2.67 + 1 = 3.67 g
Now we have to calculate the mass of
and C.

and,

Therefore, the mass of carbon and oxygen produced is 8.83 g and 23.6 g respectively.