Answer:
Magnetic force, attraction or repulsion that arises between electrically charged particles because of their motion. It is the basic force responsible for such effects as the action of electric motors and the attraction of magnets for iron. Electric forces exist among stationary electric charges; both electric and magnetic forces exist among moving electric charges. The magnetic force between two moving charges may be described as the effect exerted upon either charge by a magnetic field created by the other.
According to the <u>Third Kepler’s Law of Planetary motion</u> “<em>The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.</em>
In other words, this law states a relation between the orbital period
of a body (moon, planet, satellite) orbiting a greater body in space with the size
of its orbit.
This Law is originally expressed as follows:
<h2>

(1)
</h2>
Where;
is the Gravitational Constant and its value is 
is the mass of Jupiter
is the semimajor axis of the orbit Io describes around Jupiter (assuming it is a circular orbit, the semimajor axis is equal to the radius of the orbit)
If we want to find the period, we have to express equation (1) as written below and substitute all the values:
<h2>

(2)
</h2>
Then:
<h2>

(3)
</h2>
Which is the same as:
<h2>

</h2>
Therefore, the answer is:
The orbital period of Io is 42.482 h
Answer:
yes you are totally right
Answer:
9.43 m/s
Explanation:
First of all, we calculate the final kinetic energy of the car.
According to the work-energy theorem, the work done on the car is equal to its change in kinetic energy:

where
W = -36.733 J is the work done on the car (negative because the car is slowing down, so the work is done in the direction opposite to the motion of the car)
is the final kinetic energy
is the initial kinetic energy
Solving,

Now we can find the final speed of the car by using the formula for kinetic energy

where
m = 661 kg is the mass of the car
v is its final speed
Solving for v, we find
