Do you remember this formula for the distance traveled while accelerated ?
<u>Distance = (initial speed) x (t) plus (1/2) x (acceleration) x (t²)</u>
I think this is exactly what we need for this problem.
initial speed = 20 m/s down
acceleration = 9.81 m/s² down
t = 3.0 seconds
Distance down = (20) x (3) plus (1/2) x (9.81) x (3)²
Distance = (60) plus (4.905) x (9)
Distance = (60) plus (44.145) = 104.145 meters
Choice <em>D)</em> is the closest one.
Answer:
I would describe wave motion as “propagating oscillations” as a general phrase.
For something like water waves, I would say “water waves are oscillations of the surface of a body of water that propagate in a given direction.”
For electromagnetic waves I would say “An electromagnetic wave is an oscillating disturbance of the electric and magnetic fields that propagates through space.”
Explanation:
PLZ MARK BRAINLIEST
I think all of those are examples
Newton's first law of motion - sometimes referred to as the law of inertia. Newton's first law of motion is often stated as. An object at rest stays at rest and an object in motion stays in motion with the same speed and in the same direction unless acted upon by an unbalanced force.
Answer:
(c) increase by a factor of four
Explanation:
energy = power x time, and power = resistance x current ^2. 2^2 = 4.