Answer:
176.58Watts
Explanation:
Power= work done /time
Where mass(m)=60kg
Height (h) =3m
Time(s)=10s
Force of gravity = 9.81m/s^2
Power=mgh/t
Power= (60kg) * (9.81m/s^2) * (3m)/10s
Power= 176.58Watts
S=Vt
110=V(72)
110/72=V
V=1.527m/s
Answer:
1. Luminosity
2.Apparent brightness
Explanation:
There are two factors on which brightness of star appear to be in the sky
The two factors are
1. Luminosity
2.Apparent brightness
1.Luminosity :It is defined as the total energy emitted by the object in a given time.Luminosity vary with the distance of observer from the star.Luminosity is a intrinsic property which depends on the fundamental chemical composition and structure of the material.Luminosity is depends on the size of star.Lager the star luminosity will be more.
2.Apparent brightness: It is defined as how bright a star appears from an observer on the earth and the amount of starlight reaching the earth.if the distance is large then the brightness decreases.When the distance of star from us small then the brightness of star increases.Distance is inversely proportional to brightness of the star.
False: the force of gravity acting on different objects is different and depends on their mass
Explanation:
The answer is false.
The force of gravity acting on an object (also known as weight) near the Earth's surface is given by:

where:
m is the mass of the object
is the acceleration of gravity
We see from the formula that the force of gravity acting on an object depends on the mass: the larger the mass of the object, the stronger the gravitational force acting on it, and the smaller the mass, the weaker the force of gravity.
The factor that does not change is the acceleration of gravity, which is constant (
) if we are near the Earth's surface, and implies that all the objects in free fall accelerate at the same rate towards the ground, regardless of their size and weight.
Learn more about forces and weight here:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly
Answer:
V=22.4m/s;T=2.29s
Explanation:
We will use two formulas in order to solve this problem. To determine the velocity at the bottom we can use potential and kinetic energy to solve for the velocity and use the uniformly accelerated displacement formula:

Solving for velocity using equation 1:

Solving for time in equation 2:
