As per the question Bob drops the bag full with feathers from the top of the building.
The mass of the bag(m)= 1.0 lb
Let the air resistance is neglected.As the bag is under free fall ,hence the only force that acts on the bag is the force of gravity which is in vertical downward direction.
Here the acceleration produced on bag due to the free fall will be nothing else except the acceleration due to gravity i.e g =9.8 m/s^2
Here we are asked to calculate the distance travelled by the bag at the instant 1.5 s
Hence time t= 1.5 s
From equation of kinematics we know that -
S=ut + 0.5at^2 [ here S is the distance travelled]
For motion under free fall initial velocity (u)=0.
Hence S= 0×1.5+{0.5×(-9.8)×(1.5)^2}
⇒ -S =0-11.025 m
⇒ S= 11.025 m
=11 m
Here the negative sign is taken only due to the vertical downward motion of the body .we may take is positive depending on our frame of reference .
Hence the correct option is B.
<span>NO.
Air resistance does not affect the motion of a falling object differently when the mass is greater because the mass of an object does not in any way affect the speed of falling due to gravity, and air resistance depends only on the speed of the object and its surface area.</span>
When we set something down on the ground, the kind of work that our arms doing is : negative apex
It's happen whenever we do works that are align with the force of Gravity (to the bottom)
hope this helps
Answer:
(a) 5.43 x 10⁵ J
(b) 3.07 x 10⁵ J
(c) 45 °C
Explanation:
(a)
= Latent heat of fusion of ice to water = 3.33 x 10⁵ J/kg
m = mass of ice = 1.63 kg
= Energy required to melt the ice
Energy required to melt the ice is given as
= m
= (1.63) (3.33 x 10⁵)
= 5.43 x 10⁵ J
(b)
E = Total energy transferred = 8.50 x 10⁵ J
Q = Amount of energy remaining to raise the temperature
Using conservation of energy
E =
+ Q
8.50 x 10⁵ = 5.43 x 10⁵ + Q
Q = 3.07 x 10⁵ J
(c)
T₀ = initial temperature = 0°C
T = Final temperature
m = mass of water = 1.63 kg
c = specific heat of water = 4186 J/(kg °C)
Q = Amount of energy to raise the temperature of water = 3.07 x 10⁵ J
Using the equation
Q = m c (T - T₀)
3.07 x 10⁵ = (1.63) (4186) (T - 0)
T = 45 °C
Asteroid 1 has more mass because the same force exerted caused this asteroid to move less therefore having more mass