Answer:
yes
Explanation:
The metal is closer than 20 cm to the magnet which is in the magnetic field.
Answer:
1.25 m/s
Explanation:
Given,
Mass of first ball=0.3 kg
Its speed before collision=2.5 m/s
Its speed after collision=2 m/s
Mass of second ball=0.6 kg
Momentum of 1st ball=mass of the ball*velocity
=0.3kg*2.5m/s
=0.75 kg m/s
Momentum of 2nd ball=mass of the ball*velocity
=0.6 kg*velocity of 2nd ball
Since the first ball undergoes head on collision with the second ball,
momentum of first ball=momentum of second ball
0.75 kg m/s=0.6 kg*velocity of 2nd ball
Velocity of 2nd ball=0.75 kg m/s ÷ 0.6 kg
=1.25 m/s
Answer:
<h2>a) 50°</h2><h2>b) 40°</h2>
Explanation:
Check the complete diagram n the attachment below
a) The angle of incidence on a plane surface is the angle between the incidence ray and the normal ray acting on a plane surface. The normal ray is the ray perpendicular to the surface while the incidence ray is the ray striking a plane surface.
According to the diagram, the angle of reflection r₂ on M₂ is 90°-g where g is the angle of glance.
Given angle of glance on M₂ to be 40°, r₂ = 90-40 = 50°
According the second law of reflection, the angle of incidence = angle of reflection, therefore i₂ = r₂ = 50° (on M₂)
Also ∠OO₂O₁ = ∠OO₁O₂ = 40° (angle of glance on M₁){alternate angle}
The angle of incidence on M₁ = 90° - 40° = 50°
b) The angle of incidence to the surface of M₁(∠PO₁A)will be the angle of glance on M₁ which is equivalent to 40°
Answer:
it's Newton's first law of motion
As the law states that.
Everybody continues in its rest or of uniform motion unless an external force acts on it.
Answer:
4462.0927 W
Explanation:
= Emissivity of the panel = 1
= Stefan-Boltzmann constant = 
T = Temperature = (273.15+6)
Area of the panel is given by

The power radiated is given by

The power radiated from each panel is 4462.0927 W