1) Conversion of an isotope one chemical element or an isotope into another chemical element is called as nuclear transmutation.
<span>
2) In a nuclear transmutation reactions</span> can be achieved either due to radioactive decay or due to nuclear reactions.
3) In this technique, it is possible to convert a stable element into radioactive atom by bombarding in with high speed particles. The initial stable nuclei is referred as parent nuclei, the fast moving particle is referred as projectile while new element which is formed is called as daughter element.
4) In the present reaction:
<span>1 1 H+ 1 0 n -> 2 1 H
1 1H is a parent nuclei which is bombarded with the fast moving projectile
(1 0 n) to generate a new daughter nuclei (2 1H). </span>
Answer:
The Equilibrium constant K is far greater than 1; K>>1
Explanation:
The equilibrium constant, K, for any given reaction at equilibrium, is defined as the ratio of the concentration of the products raised to their stoichiometric coefficients divided by the concentration of reactants raised to their stoichiometric coefficients.
It tells us more about how how bigger or smaller the concentration of products is to that of the reactants when a reaction attains equilibrium. From the given data, as the color of the reactant mixture (Br2 is reddish-brown, and H2 is colourless) fades, more of the colorless product (HBr is colorless) is being formed as the reaction approaches equilibrium. This indicates yhat the concentration of products becomes relatively higher than that of the reactants as the reaction progresses towards equilibrium, the equilibrium constant K, must be greater than 1 therefore.
Answer:
See Explanation
Explanation:
moles of NH₃ = 11.9g/17.03 g/mol = 0.699 mole
moles of CN₂OH₄ = 1/2(0.699) mole =0.349 mole
Theoretical yield of CN₂OH₄ = (0.349 mole)(60 g/mole) = 20.963 grams
%Yield = Actual Yield/Theoretical Yield x 100%
= 18.5g/20.963g x 100% = 88.25%
Heating an atom excites its electrons and they jump to higher energy levels. When the electrons return to lower energy levels, they emit energy in the form of light. ... Every element has a different number of electrons and a different set of energy levels. Thus, each element emits its own set of colours.