Another advantage of advantage of using a microspectrophotometer to analyze fibers asides not causing damage to the sample is that the sample can be quite small.
<h3>What is a microspectrophotometer?</h3>
Microspectrophotometry is a biological technique used to measure the absorption or transmission spectrum of a solid or liquid material in either transmitted or reflected light.
Microspectrophotometry can also measure the emission of light by a sample, which is usually small as the micro implies.
One advantage of microspectrophotometry is that the sample does not get damaged. However,
However, another advantage of advantage of using a microspectrophotometer to analyze fibers asides not causing damage to the sample is that the sample can be quite small.
Learn more about microspectrophotometry at: brainly.com/question/5832827
carbon atoms form 2 bonds with sharing valence electrons
Answer:
51.66 mol H2O (steam)
Explanation:
5.74 mol C3H18 x 18 mol H2O/ 2 mol C3H18 = 51.66 mol H2O (steam)
Answer:
1) 0.3g Mg
2)0.5g MgO
3)0.2g O
4)0.01mol Mg & 0.01mol O
5)0.01mol MgO
6) Empirical formula MgO
Explanation:
The mass og Mg is obtained by substracting 24.36g from 24.66g:
24.66 - 24.36 = 0.3g Mg
The ignition of Mg means that it's reacting with oxygen to form an oxide. The increase in the crucible mass after the Mg ignition is due to the addition of oxygen. However, the addition of few drops of water produces a new compound: a hydroxide. According to the oxidation state og Mg (2+), the only magnesium oxide possible is MgO. It happens because the oxidation state of oxygen in oxides is 2-. Which means that just one oxygen atom is required to electrically neutralize one magnesium atom.
We can use a conversion factor to know how much MgO is made from from 0.3 g of Mg:
*
= 0.2g O
Thereby the mass of the oxide is 0.2g O + 0.3g Mg = 0.5g MgO
We convert the mass of oxygen and magnesium to the respective amounts in moles by using conversion factors:
*
= 0.01mol O
*
= 0.01mol Mg
The moles of MgO can be obtained from:
*
= 0.01mol MgO
To obtain the empirical formula, the amount fo moles of each elements must be divided by the smallest one, in this case, 0.01.
The result for both number of Mg atoms and O atoms is 1. This can be interpreted to mean that there is a Mg atom for each O atom forming the formula unit of the compound.
The step when water is added to the compound resulting after heating does not affect the calculations necessary for the magnesium oxide.
The motivation to abstain from adding water to concentrated acids is that, with a few acids, amid weakening, a considerable measure of warmth is discharged, by adding the corrosive to the water, the generally extensive measure of water will retain the warmth. On the off chance that you added water to concentrated corrosive when you initially beginning pouring the water, it could get sufficiently hot for the little measure of water that was filled all of a sudden bubble and splatter corrosive on you. Concentrated sulfuric corrosive is most famous for doing this, not all acids get that hot on weakening, but rather in the event that you make a propensity for continually adding the corrosive to water for every one of them, you can't turn out badly.