The answer is:
Forces acting on the sled are paired with equal and opposite forces.
The explanation:
About to push you, this means that he doesn't push yet. If the sled is on level ground and no one is pushing it, then forces are equal and opposite.
The gravity force pulls down and the ground pushes up.
This is Newton's third law:
Newton's third law: If an object A exerts a force on object B, then object B must exert a force of equal magnitude and opposite direction back on object A.
This law represents a certain symmetry in nature: forces always occur in pairs, and one body cannot exert a force on another without experiencing a force itself.
We can also see Newton’s third law at work by taking a look at how people move about. Consider a swimmer pushing off from the side of a pool.
Something that is not magnetic
1km=1000m; 1hr=3600secs
1km/hr=1000/3600= 5/18m/sec
To convert km/hr into m/sec, multiply the number by 5 and then divide it by 18.
18kmh-1= 18•5=90
90/18=5
5ms-1
<h2>
Answer: 1000 J</h2>
The Work
done by a Force
refers to the release of potential energy from a body that is moved by the application of that force to overcome a resistance along a path.
It should be noted that it is a scalar magnitude, and its unit in the International System of Units is the Joule (like energy). Therefore, 1 Joule is the work done by a force of 1 Newton when moving an object, in the direction of the force, along 1 meter:
Now, when the applied force is constant and the direction of the force and the direction of the movement are parallel, the equation to calculate it is:
(1)
When they are not parallel, both directions form an angle, let's call it
. In that case the expression to calculate the Work is:
(2)
For example, in order to push the 200 N box across the floor, you have to apply a force along the distance
to overcome the resistance of the weight of the box (its 200 N).
In this case both <u>(the force and the distance in the path) are parallel</u>, so the work
performed is the product of the force exerted to push the box
by the distance traveled
. as shown in equation (1).
Hence:
>>>>This is the work
Answer:

Explanation:
The charge on one object, 
The distance between the charges, r = 0.22 m
The force between the charges, F = 4,550 N
Let q₂ is the charge on the other sphere. The electrostatic force between two charges is given by the formula as follows :

So, the charge on the other sphere is
.