1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Illusion [34]
3 years ago
15

A uniform disk of mass M = 4.9 kg has a radius of 0.12 m and is pivoted so that it rotates freely about its axis. A string wrapp

ed around the disk is pulled with a force F equal to 20 N.
(a) What is the torque being exerted by this force about the rotation axis?

(b) What is the angular acceleration of the disk?

(c) If the disk starts from rest, what is its angular speed after 4.6 s?

(d) What is its kinetic energy after the 4.6 s?

(e) What is the angular displacement of the disk during the 4.6 s?
Physics
1 answer:
AlekseyPX3 years ago
3 0

Answer:

(A) 2.4 N-m

(B) 0.035kgm^2

(C) 315.426 rad/sec

(D) 1741.13 J

(E) 725.481 rad

Explanation:

We have given mass of the disk m = 4.9 kg

Radius r = 0.12 m, that is distance = 0.12 m

Force F = 20 N

(a) Torque is equal to product of force and distance

So torque \tau =Fr, here F is force and r is distance

So \tau =20\times 0.12=2.4Nm

(B) Moment of inertia is equal to I=\frac{1}{2}mr^2

So I=\frac{1}{2}\times 4.9\times 0.12^2=0.035kgm^2

Torque is equal to \tau =I\alpha

So angular acceleration \alpha =\frac{\tau }{I}=\frac{2.4}{0.035}=68.571rad/sec^2

(C) As the disk starts from rest

So initial angular speed \omega _{0}=0rad/sec

Time t = 4.6 sec

From first equation of motion we know that \omega =\omega _0+\alpha t

So \omega =0+68.571\times  4.6=315.426rad/sec

(D) Kinetic energy is equal to KE=\frac{1}{2}I\omega ^2=\frac{1}{2}\times 0.035\times 315.426^2=1741.13J

(E) From second equation of motion

\Theta =\omega _0t+\frac{1}{2}\alpha t^2=0\times 4.6+\frac{1}{2}\times 68.571\times 4.6^2=725.481rad

You might be interested in
Hull (1943) had rats push a lever that required 21 grams of force to budge. After they had learned to push the lever in order to
Zina [86]

Years of research have demonstrated that rats are intelligent creatures who experience pain and pleasure, care about one another, are able to read the emotions of others, and would assist other rats, even at their own expense.

<h3>Experiments:</h3>

In trials carried out at Brown University in the 1950s, rats were trained to press a lever for food, but they stopped pressing the lever when they noticed that with each press, a rat in an adjacent cage would scream in pain (after experiencing an electric shock).

Rats were trained to press a lever to lower a block that was hanging from a hoist by electric shocks administered by experimenters. A rat was subsequently hoisted into a harness by the experimenters, and according to their notes, "This animal normally shrieked and wriggled sufficiently while dangling, and if it did not, it was jabbed with a sharp pencil until it exhibited indications of discomfort." Even if it wasn't in danger of receiving a shock, a rat watching the scenario from the floor would pull a lever to lower the hapless rodent to safety.

Learn more about experiments on rats here:

brainly.com/question/13625715

#SPJ4

6 0
2 years ago
The valence electrons of metals are weakly attracted to the parent nuclei, so the electrons break free and float. The moving ele
siniylev [52]

The valence electrons of metals are weakly attracted to the parent nuclei, so the electrons break free and float. The moving electrons form a electron <u>negative</u> blanket that binds the atomic <u>positive</u> nuclei together, forming a metallic bond.

So the answers are <u>{ Negative }</u> and <u>{ Positive }.</u>  

Please vote Brainliest (:

5 0
3 years ago
Read 2 more answers
When a sinusoidal wave with speed 20 m/s , wavelength 35 cm and amplitude of 1.0 cm passes, what is the maximum speed of a point
vova2212 [387]

To solve this problem it is necessary to apply the concepts related to frequency as a function of speed and wavelength as well as the kinematic equations of simple harmonic motion

From the definition we know that the frequency can be expressed as

f = \frac{v}{\lambda}

Where,

v = Velocity \rightarrow 20m/s

\lambda = Wavelength \rightarrow 35*10^{-2}m

Therefore the frequency would be given as

f = \frac{20}{35*10^{-2}}

f = 57.14Hz

The frequency is directly proportional to the angular velocity therefore

\omega = 2\pi f

\omega = 2\pi *57.14

\omega = 359.03rad/s

Now the maximum speed from the simple harmonic movement is given by

V_{max} = A\omega

Where

A = Amplitude

Then replacing,

V_{max} = (1*10^{-2})(359.03)

V_{max} = 3.59m/s

Therefore the maximum speed of a point on the string is 3.59m/s

8 0
3 years ago
Which one of the following temperatures is equal to 5°C?
natali 33 [55]

Answer : The correct option is, (D) 278 K

Explanation :

We are given temperature 5^oC.

Now the conversion factor used for the temperature is,

K=^oC+273

where, K is kelvin and ^oC is Celsius.

Now put the value of temperature, we get

K=5^oC+273=278K

Therefore, the temperature 278 K is equal to the 5^oC


7 0
3 years ago
StarsA. begin as protostars, which fire up when they collapse and become denser and hotter.B. create elements by splitting the n
Colt1911 [192]

Answer:

A

Explanation:

Begin as protostars, which fire up when they collapse and become denser and hotter.

4 0
3 years ago
Other questions:
  • An advertiser who calls a basement apartment a “garden apartment” is using the rhetorical device called
    14·1 answer
  • Vector L is 303 m long in a
    13·1 answer
  • Rutherford hypothesized that, in his experiment,more alpha particles would be deflected if ?
    13·1 answer
  • I don't understand how to find the frequency and period of wavelengths. Can anyone help me?
    14·1 answer
  • A Cessna 172 aircraft must reach a speed of 35 m/s for takeoff. How long of a runway is needed if the acceleration of the aircra
    11·1 answer
  • Most sodium atoms have an atomic mass of 23, but a few have atomic
    7·1 answer
  • A long distance runner sees the finish line and accelerates at a rate in 1.2 m/s2 for
    5·1 answer
  • 1. Transverse waves _____.
    7·2 answers
  • Reduce<br> Reflects<br> Transfers<br> Stops
    6·1 answer
  • For a series circuit:
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!