Answer:
the acceleration of the race car is 2 m/s²
Explanation:
Given;
initial velocity of the race car, u = 44 m/s
final velocity of the race car, v = 66 m/s
time of motion of the race car, t = 11 s
The acceleration of the race car is calculated as;

Therefore, the acceleration of the race car is 2 m/s²
Answer:
Wavelength = 5.77 * 10^-5 meters.
Explanation:
Given the following data:
Frequency of light = 5.2 *10^12 Hz
We know that the Speed of light = 3.0 * 10^8 m/s
To find the wavelength of light;
Mathematically, wavelength is calculated using this formula;
Substituting into the equation, we have;
Wavelength = 5.77 * 10^-5 meters.
Words less true are seldom if ever spoken.
Answer:
40 s
Explanation:
After 10 seconds, the first skater would have a 8m/s * 10s = 80 m head start
Let t be the number of seconds after the second skater starts will the second skater overtake the first skater
The distance traveled by the first skater after t seconds is

Similarly the distance traveled by the 2nd skater after t seconds is

Since the 2nd skater catches up to the 1st one after 80 m behind, the distance traveled by the 2nd one must be 80m greater than the distance of the 1st skater

We can substitute 



Answer:
v₀ = 13.9 10³ m / s
Explanation:
Let's analyze this exercise we can use the basic kinematics relationships to love the initial velocity and the acceleration we can look for from Newton's second law where force is gravitational attraction.
F = m a
G m M / x² = m dv / dt = m dv/dx dx/dt
G M / x² = dv/dx v
GM dx / x² = v dv
We integrate
v² / 2 = GM (-1 / x)
We evaluate between the lower limits where x = Re = 6.37 10⁶m and the velocity v = vo and the upper limit x = 2.50 10⁸m with a velocity of v = 8.50 10³ m/s
½ ((8.5 10³)² - v₀²) = GM (-1 /(2.50 10⁸) + 1 / (6.37 10⁶))
72.25 10⁶ - v₀² = 2 G M (+0.4 10⁻⁸ - 1.57 10⁻⁷)
72.25 10⁶ - v₀² = 2 6.63 10⁻¹¹ 5.98 10²⁴ (-15.3 10⁻⁸)
72.25 10⁶ - v₀² = -1.213 10⁸
v₀² = 72.25 10⁶ + 1,213 10⁸
v₀² = 193.6 10⁶
v₀ = 13.9 10³ m / s