The slowest line is the solid line and the fastest is the dotted line that crosses the solid line
for future reference you just need to find the slope or the line which is traveling most vertical
Answer:

Explanation:
We are given that


d=1.9 cm=
Using 1m=100 cm
We have to find the electric field strength.

Using the formula





Mass of electron,m

Substitute the values


Answer:
T_finalmix = 59.5 [°C].
Explanation:
In order to solve this problem, a thermal balance must be performed, where the heat is transferred from water to methanol, at the end the temperature of the water and methanol must be equal once the thermal balance is achieved.

where:

mwater = mass of the water = 0.4 [kg]
Cp_water = specific heat of the water = 4180 [J/kg*°C]
T_waterinitial = initial temperature of the water = 85 [°C]
T_finalmix = final temperature of the mix [°C]

Now replacing:
![0.4*4180*(85-T_{final})=0.4*2450*(T_{final}-16)\\142120-1672*T_{final}=980*T_{final}-15680\\157800=2652*T_{final}\\T_{final}=59.5[C]](https://tex.z-dn.net/?f=0.4%2A4180%2A%2885-T_%7Bfinal%7D%29%3D0.4%2A2450%2A%28T_%7Bfinal%7D-16%29%5C%5C142120-1672%2AT_%7Bfinal%7D%3D980%2AT_%7Bfinal%7D-15680%5C%5C157800%3D2652%2AT_%7Bfinal%7D%5C%5CT_%7Bfinal%7D%3D59.5%5BC%5D)
Answer:
Part a)
T = 3.96 s
Part b)
T = 1.98 s
Part c)
T = 2.8 s
Explanation:
As we know that time period of spring block system is given as

T = 2.8 s
Part a)
If the mass of the block attached is doubled
then we will have



Part b)
If the spring constant is doubled
then we have



Part c)
If the amplitude is halved but mass and spring constant will remain the same
so here we know that time period does not depends on Amplitude
so we will have

T = 2.8 s