Answer:

Explanation:
the half life of the given circuit is given by

where [/tex]\tau = RC[/tex]

Given 
resistance in the circuit is 40 ohm and to extend the half cycle we added new resister of 48 ohm. the net resitance is 40+48 = 88 ohms
now the new half life is

Divide equation 2 by 1


putting all value we get new half life


Answer:
Kinetic energy can be used to develop electric energy which can be used as electricity.
Explanation:
The kinetic energy can be harnessed; much like some hydro power technologies harness water movement. A way to convert this kinetic energy into electric energy is through piezoelectric. By applying a mechanical stress to a piezoelectric crystal or material an electric current will be created and can be harvested.
Kinetic energy is also generated by the human body when it is in motion. Studies have also been done using kinetic energy and then converting it to other types of energy, which is then used to power everything from flashlights to radios and more.
Answer:
maximum allowable electrical power=4.51W/m
critical radius of the insulation=13mm
Explanation:
Hello!
To solve this heat transfer problem we must initially draw the wire and interpret the whole problem (see attached image)
Subsequently, consider the heat transfer equation from the internal part of the tube to the external air, taking into account the resistance by convection, and conduction as shown in the attached image
to find the critical insulation radius we must divide the conductivity of the material by the external convective coefficient
