Answer:
Period refers to the time for something to happen and is measured in seconds/cycle
Here is the highly detailed, arcane, complex, technical form of Ohm's Law that is needed in order to answer this question ===> I = V / R .
Current = (voltage) / (resistance)
Current = (1.5 V) / (10 Ω)
<em>Current = 0.15 Ampere</em>
Answer:
A) 
B) 
C) 
D) mosquitoes speed in part B is very much larger than that of part C.
Explanation:
Given:
- Distance form the sound source,

- sound intensity level at the given location,

- diameter of the eardrum membrane in humans,

- We have the minimum detectable intensity to the human ears,

(A)
<u>Now the intensity of the sound at the given location is related mathematically as:</u>
..........................................(1)



<em>As we know :</em>


is the energy transferred to the eardrums per second.
(B)
mass of mosquito, 
<u>Now the velocity of mosquito for the same kinetic energy:</u>



(C)
Given:
- Sound intensity,

<u>Using eq. (1)</u>



Now, power:



Hence:




(D)
mosquitoes speed in part B is very much larger than that of part C.
Answer:
y = 128.0 km
Explanation:
The minimum separation of two objects is determined by Rayleygh's diffraction criterion, which establishes that two bodies are solved if the first minino of diffraction of one coincides with the central maximum of the second, with this criterion the diffraction equation remains
the diffraction equation for the first minimum is
a sin θ = λ
In the case of circular openings, the equation must be solved in polar coordinates, leaving the expression, we use the approximation that the sine of tea is very small.
θ = 1.22 λ / d
d = 15 cm
to find the distance we can use trigonometry
tan θ = y / L
tan θ = sin θ / cos θ = θ
substituting
y / L = λ / d
y = L λ /d
let's calculate
y = 384 10⁸ 500 10⁻⁹ / 0.15
y = 1.28 10⁵ m
Let's reduce to km
y = 1.28 10⁵ m (1km / 10³ m)
y = 128.0 km
the correct answer is 120 km away
Answer:
The magnetic field is
Explanation:
From the question we are told that
The mass of the metal rod is 
The current on the rod is 
The distance of separation(equivalent to length of the rod ) is 
The coefficient of kinetic friction is 
The kinetic frictional force is 
The constant speed is 
Generally the magnetic force on the rod is mathematically represented as

For the rod to move with a constant velocity the magnetic force must be equal to the kinetic frictional force so

=> 
=> 
=> 