The Steps my friend need to make an ethical decision are:
- Step One: He or she needs to define the Problem.
- Step Two: He or she needs to find out possible Resources to solve the problem and then Brainstorm on the List for the Potential Solutions to the problem.
- Step Three : Evaluate and examine those Alternatives. ...
- Step Four : Make his or her Decision, Implement It and then examine your Decision.
<h3>What is ethical decision model?</h3>
An ethical decision-making model is known to be a kind of a tool that can be used by a person to help create the ability to think in regards to an ethical dilemma and come to an ethical decision.
Note that Ethical decision-making is one that is dependent on the key character values such as trustworthiness, respect, role, fairness, and others.
Therefore, The Steps my friend need to make an ethical decision are:
- Step One: He or she needs to define the Problem.
- Step Two: He or she needs to find out possible Resources to solve the problem and then Brainstorm on the List for the Potential Solutions to the problem.
- Step Three : Evaluate and examine those Alternatives. ...
- Step Four : Make his or her Decision, Implement It and then examine your Decision.
Learn more about ethical decision from
brainly.com/question/21105288
#SPJ1
Answer and Explanation:
clear all; close all;
N=512;
t=(1:N)/N;
fs=1000;
f=(1:N)*fs/N;
x= sin(2*pi*200*t) + sin(2*pi*400*t);
y= sin(2*pi*200*t) + sin(2*pi*900*t);
for n = 1:20
a(n) = (2/N)*sum(x.*(cos(2*pi*n*t)))
b(n) = (2/N)*sum(x.*(sin(2*pi*n*t)))
c(n) = sqrt(a(n).^2+b(n).^2)
theta(n) =-(360/(2*pi))*atan(b(n)./a(n));
end
plot(f(1:20),c(1:20),'rd');
disp([a(1:4),b(1:4),c(1:4),theta(1:4)])
Answer:
Check the explanation
Explanation:
Energy alance of 2 closed systems: Heat from CO2 equals the heat that is added to air in

1x0.723x
=3x0.780x
⇒
= 426.4 °K
The initail volumes of the gases can be determined by the ideal gas equation of state,
=
= 0.201
The equilibrium pressure of the gases can also be obtained by the ideal gas equation

= 1x(8.314 28.97)x426.4+3x(8.314 44)x426.4
(0.201+1.275)
= 246.67 KPa = 2.47 bar
Answer:
A supercapacitor, also called an ultracapacitor, is a high-capacity capacitor with a capacitance value much higher than other capacitors, but with lower voltage limits, that bridges the gap between electrolytic capacitors and rechargeable batteries.
Explanation: